Солнечные батареи: все про альтернативный источник энергии — solar-energ.ru. Солнечная батарея своими руками: как сделать в домашних условиях
Человечество в целях заботы об экологии и экономии денежных средств начало использовать альтернативные источники энергии, к которым, в частности, принадлежат солнечные батареи. Покупка такого удовольствия обойдется довольно дорого, но не составляет сложности сделать данное устройство своими руками. Поэтому вам не помешает узнать, как самому сделать солнечную батарею. Об этом и пойдет речь в нашей статье.
Устройство и принципы работы
Солнечные батареи — устройства, генерирующие электроэнергию с помощью фотоэлементов.
Прежде чем говорить о том, как сделать солнечную батарею своими руками, необходимо понять устройство и принципы ее работы. Солнечная батарея включает в себя фотоэлементы, соединенные последовательно и параллельно, аккумулятор, накапливающий электроэнергию, инвертор, преобразующий постоянный ток в переменный и контроллер, следящий за зарядкой и разрядкой аккумулятора.
Как правило, фотоэлементы изготавливают из кремния, но его очистка обходится дорого, поэтому в последнее время начали использовать такие элементы, как индий, медь, селен.
Каждый фотоэлемент является отдельной ячейкой, генерирующей электроэнергию. Ячейки сцеплены между собой и образуют единое поле, от площади которого зависит мощность батареи. То есть, чем больше фотоэлементов, тем больше электроэнергии генерируется.
Для того чтобы изготовить солнечную панель своими руками в домашних условиях, необходимо понимать сущность такого явления, как фотоэффект. Фотоэлемент – кремниевая пластинка, при попадании света на которую с последнего энергетического уровня атомов кремния выбивается электрон. Передвижение потока таких электронов вырабатывает постоянный ток, который впоследствии преобразуется в переменный. В этом и заключается явление фотоэффекта.
Преимущества
Солнечные батареи имеют следующие преимущества:
- безвредность для экологии;
- долговечность;
- бесшумная работа;
- легкость изготовления и монтажа;
- независимость поставки электричества от распределительной сети;
- неподвижность частей устройства;
- незначительные финансовые затраты;
- небольшой вес;
- работа без механических преобразователей.
Разновидности
Солнечные батареи подразделяются на следующие виды.
Кремниевые
Кремний — самый популярный материал для батарей.
Кремниевые батареи также делятся на:
- Монокристаллические: для производства таких батарей используется очень чистый кремний.
- Поликристаллические (дешевле монокристаллических): поликристаллы получают постепенным охлаждением кремния.
Пленочные
Такие батареи подразделяются на следующие виды:
- На основе теллурида кадмия (КПД 10%): кадмий обладает высоким коэффициентом светопоглощения, что и позволяет использовать его в производстве батарей.
- На основе селенида меди — индия: КПД выше, чем у предыдущих.
- Полимерные.
Солнечные батареи из полимеров начали изготавливать относительно недавно, обычно для этого используют фуреллены, полифенилен и др. Пленки из полимеров очень тонкие, порядка 100 нм. Несмотря на КПД 5%, батареи из полимеров имеют свои преимущества: дешевизна материала, экологичность, эластичность.
Аморфные
КПД аморфных батарей составляет 5%. Такие панели изготавливаются из силана (кремневодорода) по принципу пленочных батарей, поэтому их можно отнести, как к кремниевым, так и к пленочным. Аморфные батареи эластичны, генерируют электричество даже в непогоду, поглощают свет лучше других панелей.
Материалы
Для изготовления солнечной батареи потребуются следующие материалы:
- фотоячейки;
- алюминиевые уголки;
- диоды Шоттки;
- силиконовые герметики;
- проводники;
- крепежные винты и метизы;
- поликарбонатный лист/оргстекло;
- паяльное оборудование.
Эти материалы обязательны для того, чтобы сделать солнечную батарею своими руками.
Выбор фотоэлементов
Чтобы сделать солнечную батарею для дома своими руками, следует правильно подобрать фотоэлементы. Последние подразделяются на монокристаллические, поликристаллические и аморфные.
КПД первых составляет 13%, но такие фотоэлементы малоэффективны в непогоду, внешне представляют собой ярко-синие квадраты. Поликристаллические фотоэлементы способны генерировать электроэнергию даже в непогоду, хотя их КПД всего лишь 9%, внешне темнее монокристаллических и срезаны по краям. Аморфные фотоячейки изготавливаются из гибкого кремния, их КПД составляет 10%, работоспособность не зависит от погодных условий, но изготовление таких ячеек слишком затратное, поэтому их редко используют.
Если вы планируете применять генерируемую фотоэлементами электроэнергию на даче, то советуем собрать солнечную батарею своими руками из поликристаллических ячеек, так как их КПД достаточно для ваших целей.
Следует покупать фотоячейки одной марки, так как фотоэлементы нескольких марок могут сильно отличаться — это может стать причиной возникновения проблем со сборкой батареи и ее функционированием. Следует помнить, что количество производимой ячейкой энергии прямо пропорционально ее размеру, то есть чем крупнее фотоячейка, тем больше электроэнергии она производит; напряжение ячейки зависит от ее типа, а никак не от размера.
Количество производимого тока определяется габаритами самого маленького фотоэлемента, поэтому следует покупать фотоячейки одинакового размера. Конечно же, не стоит приобретать дешевую продукцию, ведь это значит, что она не прошла проверку. Также не следует покупать фотоэлементы, покрытые воском (многие производители покрывают фотоячейки воском для сохранности продукции при перевозке): при его удалении можно испортить фотоэлемент.
Расчеты и проект
Устройство солнечной панели своими руками — несложная задача, главное, подойти к ее выполнению ответственно. Чтобы изготовить солнечную панель своими руками, следует подсчитать дневное потребление электроэнергии, затем узнать среднесуточное солнечное время в вашей местности и рассчитать нужную мощность. Таким образом, станет понятно, сколько ячеек и какого размера нужно приобрести. Ведь как было сказано выше, генерируемый ячейкой ток зависит от ее габаритов.
Зная необходимый размер ячеек и их количество, нужно рассчитать габариты и вес панели, после чего необходимо выяснить выдержит ли кровля или другое место, куда планируется установка солнечной батареи, задумываемую конструкцию.
Устанавливая панель, следует не только выбрать самое солнечное место, но и постараться закрепить ее под прямым углом к солнечным лучам.
Этапы работы
Корпус
Прежде чем начать делать солнечную панель своими руками, необходимо соорудить для нее каркас. Он защищает батарею от повреждений, влаги и пыли.
Корпус собирается из влагостойкого материала: фанеры, покрытой влагоотталкивающим средством, или алюминиевых уголков, к которым силиконовым герметиком приклеивается оргстекло или поликарбонат.
При этом нужно соблюдать отступы между элементами (3-4 мм), так как необходимо учитывать расширение материала при повышении температуры.
Пайка элементов
Фотоэлементы выкладываются на лицевую сторону прозрачной поверхности, так, чтобы расстояние между ними со всех сторон было 5 мм: таким образом учитывается возможное расширение фотоячеек при повышении температуры.
Фиксируются преобразователи, имеющие два полюса: положительный и отрицательный. Если вы хотите увеличить напряжение, соединяйте элементы последовательно, если ток — параллельно.
Во избежание разрядки аккумулятора ночью, в единую цепь, состоящую из всех необходимых деталей, включают диод Шоттки, подсоединяя его к плюсовому проводнику. Затем все элементы спаивают между собой.
Сборка
В готовый каркас размещаются спаянные преобразователи, на фотоячейки наносится силикон — все это накрывается слоем из ДВП, закрывается крышкой, а места соединений деталей обрабатываются герметиком.
Даже городской житель может сделать и разместить солнечную батарею на балконе своими руками. Желательно, чтобы балкон был застеклен и утеплен.
Вот мы и разобрали, как сделать солнечную батарею в домашних условиях, оказалось, это совсем несложно.
Идеи из подручных материалов
Можно сделать солнечную батарею своими руками из подручных материалов. Рассмотрим самые популярные варианты.
Солнечная батарея из фольги
Многие удивятся, узнав, что фольгу можно применять для изготовления солнечной батареи своими руками. На самом деле, в этом нет ничего удивительного, ведь фольга увеличивает отражающие способности материалов. Например, для уменьшения перегрева панелей, их кладут на фольгу.
Как сделать солнечную батарею из фольги?
Нам понадобится:
- 2 «крокодильчика»;
- медная фольга;
- мультиметр;
- соль;
- пустая пластиковая бутылка без горлышка;
- электрическая печь;
- дрель.
Очистив медный лист и вымыв руки, отрезаем кусок фольги, кладем его на раскаленную электроплиту, нагреваем полчаса, наблюдая почернение, затем убираем фольгу с плиты, даем остыть и видим, как от листа отслаиваются куски. После нагревания оксидная пленка пропадает, поэтому черный оксид можно аккуратно удалить водой.
Затем вырезается второй кусок фольги такого же размера, как и первый, две части сгибаются, опускаются в бутылку так, чтобы у них не было возможности соприкоснуться.
Далее «крокодильчики» прицепляются к панели, провод от ненагретой фольги — к плюсу, от нагретой — к минусу, соль растворяют в воде и выливают раствор в бутылку. Батарея готова.
Также фольгу можно применять для подогрева. Для этого ее необходимо натянуть на раму, к которой затем нужно подсоединить шланги, подведенные, например, к лейке с водой.
Вот мы и узнали, как самому сделать солнечную батарею для дома из фольги.
Солнечная батарея из транзисторов
У многих дома завалялись старые транзисторы, но не все знают, что они вполне подойдут для изготовления солнечной батареи для дачи своими руками. Фотоэлементом в таком случае является полупроводниковая пластина, находящаяся внутри транзистора. Как же изготовить солнечную батарею из транзисторов своими руками? Сначала необходимо вскрыть транзистор, для чего достаточно срезать крышку, так мы сможем разглядеть пластину: она небольших размеров, чем и объясняется низкий КПД солнечных батарей из транзисторов.
Далее нужно проверить транзистор. Для этого используем мультиметр: подключаем прибор к транзистору с хорошо освещенным p-n переходом и замеряем ток, мультиметр должен зафиксировать ток от нескольких долей миллиампера до 1 или чуть больше; далее переключаем прибор в режим измерения напряжения, мультиметр должен выдать десятые доли вольта.
Прошедшие проверку транзисторы размещаем внутри корпуса, например, листового пластика и спаиваем. Можно изготовить такую солнечную батарею своими руками в домашних условиях и использовать ее для зарядки аккумуляторов и радиоприемников маленькой мощности.
Солнечная батарея из диодов
Также подходят для сборки батарей старые диоды. Сделать солнечную батарею своими руками из диодов совсем несложно. Нужно вскрыть диод, оголив кристалл, являющийся фотоэлементом, затем нагревать диод 20 секунд на газовой плите, и, когда припой расплавится, извлечь кристалл. Остается припаять вытащенные кристаллы к корпусу.
Мощность таких батарей невелика, но для электропитания небольших светодиодов ее достаточно.
Солнечная батарея из пивных банок
Такой вариант изготовления солнечной батареи своими руками из подручных средств большинству покажется очень странным, но сделать солнечную батарею своими руками из пивных банок просто и дешево.
Корпус сделаем из фанеры, на которую поместим поликарбонат или оргстекло, на задней поверхности фанеры зафиксируем пенопласт или стекловату для изоляции. Фотоэлементами нам послужат алюминиевые банки. Важно выбрать именно банки из алюминия, так как алюминий менее подвержен коррозии, чем, например, железо и обладает лучшим теплообменом.
Далее в нижней части банок проделываются отверстия, крышка срезается, и ненужные элементы загибаются для обеспечения лучшей циркуляции воздуха. Затем необходимо очистить банки от жира и грязи с помощью специальных средств, не содержащих кислоты. Далее необходимо герметично скрепить банки между собой: силиконовым гелем, выдерживающим высокие температуры, или паяльником. Обязательно нужно очень хорошо просушить склеенные банки в неподвижном положении.
Прикрепив банки к корпусу, окрашиваем их в черный цвет и закрываем конструкцию оргстеклом или поликарбонатом. Такая батарея способна нагревать воду или воздух с последующей подачей в помещение.
Мы рассмотрели варианты того, как сделать солнечную панель своими руками. Надеемся, что теперь у вас не возникнет вопроса, как сделать солнечную батарею.
Видео
Как сделать солнечные батареи своими руками – видео урок.
solar-energ.ru
как сделать самодельную солнечную панель
Солнечные батареи — источник получения энергии, которую можно направить на выработку электричества или тепла для малоэтажного дома. Вот только солнечные батареи имеют высокую стоимость и недоступны большинству жителей нашей страны. Согласны?
Другое дело, когда сделана солнечная батарея своими руками — затраты значительно уменьшаются, а работает такая конструкция ничуть не хуже, чем панель промышленного производства. Поэтому, если вы всерьез задумываетесь о приобретении альтернативного источника электроэнергии, попытайтесь сделать его своими руками – это не очень сложно.
В статье речь пойдет об изготовлении солнечных батарей. Мы расскажем, какие материалы, и инструменты для этого потребуются. А немного ниже вы найдете пошаговую инструкцию с иллюстрациями, которые наглядно демонстрируют ход работы.
Содержание статьи:
Коротко об устройстве и работе
Энергию солнца можно преобразовать в тепловую, когда энергоносителем является жидкость-теплоноситель или в электрическую, собираемую в аккумуляторах. Батарея представляет собой генератор, работающий на принципе фотоэлектрического эффекта.
Преобразование энергии солнца в электроэнергию происходит после попадания солнечных лучей на пластины-фотоэлементы, которые являются основной частью батареи.
При этом световые кванты “отпускают” свои электроны с крайних орбит. Эти свободные электроны дают электрический ток, который проходит через контроллер и скапливается в аккумуляторе, а оттуда поступает энергопотребителям.
Галерея изображений
Фото из
Сборка солнечной батареи из кремниевых пластинок
Формирование плюсовой токоведущей дорожки
Создание минусовых токоведущих линий с задней стороны
Подключение проводника и блокирующего диода
В роли пластин-фотоэлементов выступают элементы из кремния. Кремниевая пластина с одной стороны покрыта тончайшим слоем фосфора или бора – пассивного химического элемента.
В этом месте под действием солнечных лучей высвобождается большое количество электронов, которые удерживаются фосфорной плёнкой и не разлетаются.
На поверхности пластины имеются металлические “дорожки”, на которых выстраиваются свободные электроны, образуя упорядоченное движение, т.е. электрический ток.
Чем больше таких кремниевых пластин-фотоэлементов, тем больше электрического тока можно получить. Подробнее о принципе работы солнечной батареи читайте .
Верхний слой пластин-фотоэлементов покрыт слоем, который не допускает отражение солнечного света от пластин, повышая их КПД
Материалы для создания солнечной пластины
Приступая к сооружению солнечной батареи необходимо запастись следующими материалами:
- силикатные пластины-фотоэлементы;
- листы ДСП, алюминиевые уголки и рейки;
- жёсткий поролон толщиной 1,5-2,5 см;
- прозрачный элемент, выполняющий роль основания для кремниевых пластин;
- шурупы, саморезы;
- силиконовой герметик для наружных работ;
- электрические провода, диоды, клеммы.
Количество требуемых материалов зависит от размера вашей батареи, которая чаще всего ограничивается количеством доступных фотоэлементов. Из инструментов вам понадобиться: шуруповёрт или набор отвёрток, ножовка по металлу и дереву, паяльник. Для проведения испытаний готовой батареи понадобиться тестер-амперметр.
Теперь рассмотрим самые важные материалы более подробно.
Кремниевые пластины или фотоэлементы
Фотоэлементы для батарей бывают трёх видов:
- поликристаллические;
- монокристаллические;
- аморфные.
Поликристаллические пластины характеризуются низким КПД. Размер полезного действия составляет около 10 – 12 %, но зато этот показатель не понижается с течением времени. Продолжительность работы поликристаллов – 10 лет.
Солнечную батарею собирают из модулей, которые в свою очередь составляют из фотоэлектрических преобразователей. Батареи с жесткими кремниевыми фотоэлементами представляют собой некий сэндвич с последовательно расположенными слоями, закрепленными в алюминиевом профиле
Монокристаллические фотоэлементы могут похвастаться более высоким КПД – 13-25% и долгими сроками работы – свыше 25 лет. Однако со временем КПД монокристаллов снижается.
Монокристаллические преобразователи получают путем пиления искусственно выращенных кристаллов, что и объясняет наиболее высокую фотопроводимость и производительность.
Пленочные фотопреобразователи получают путем нанесения тонкого слоя аморфного кремния на полимерную гибкую поверхность
Гибкие батареи с аморфным кремнием – самые современные. Фотоэлектрический преобразователь у них напылен или наплавлен на полимерную основу. КПД в районе 5 – 6 %, но пленочные системы крайне удобны в укладке.
Пленочные системы с аморфными фотопреобразователями появились сравнительно недавно. Это предельно простой и максимально дешевый вид, но быстрее соперников теряющий потребительские качества.
Нецелесообразно использовать фотоэлементы разного размера. В данном случае максимальный ток, вырабатываемый батарей, будет ограничен током наиболее маленького по размеру элемента. Значит, более крупные пластины не будут работать на полную мощность.
При покупке фотоэлементов поинтересуйтесь у продавца способом доставки, большинство продавцов используют метод воскования, чтобы предотвратить разрушение хрупких элементов
Чаще всего для самодельных батарей используются моно- и поликристаллические фотоэлементы размером 3х6 дюймов, которые можно заказать в интернет-магазинах типа Е-бай.
Стоимость фотоэлементов достаточно высока, но многие магазины продают так называемые элементы группы В. Изделия, отнесённые к этой группе имеют брак, но пригодны к использованию, а их стоимость ниже, чем у стандартных пластин на 40-60%.
Большинство интернет-магазинов продают фотоэлементы комплектами по 36 или 72 фотоэлектрической преобразовательной пластины. Для соединения отдельных модулей в батарею потребуются шины, для подключения к системе нужны будут клеммы.
Галерея изображений
Фото из
Поликристаллическая фотоэлектрическая пластина
Лицевая и тыльная стороны кремниевой пластины
Монокристаллическая фотоэлектрическая пластина
Обратная сторона монокристаллической пластины
Каркас и прозрачный элемент
Каркас для будущей панели можно сделать из деревянных реек или алюминиевых уголков.
Второй вариант более предпочтителен по целому ряду причин:
- Алюминий – лёгкий металл, не дающий серьёзной нагрузки на опорную конструкцию, на которую планируется установка батареи.
- При проведении антикоррозийной обработки алюминий не подвержен воздействию ржавчины.
- Не впитывает влагу из окружающей среды, не гниёт.
При выборе прозрачного элемента необходимо обратить внимание на такие параметры, как показатель преломления солнечного света и способность поглощать ИК-излучение.
От первого показателя напрямую будет зависеть КПД фотоэлементов: чем показатель преломления ниже, тем выше КПД кремниевых пластин.
Минимальный коэффициент светоотражения у плексиглас или более дешёвого его варианта – оргстекла. Чуть ниже показатель преломления света у поликарбоната.
От величины второго показателя зависит, будут ли нагреваться сами кремниевые фотоэлементы или нет. Чем меньше пластины подвергаются нагреванию, тем дольше они прослужат. ИК-излучения лучше всего поглощает специальное термопоглощающее оргстекло и стекло с ИК-поглощением. Немного хуже – обычное стекло.
Если есть возможность, то оптимальным вариантом будет использование в качестве прозрачного элемента антибликового прозрачного стекла.
По соотношению стоимости к показателям преломления света и поглощения ИК-излучения оргстекло – самый оптимальный вариант для изготовления гелиобатареи
Проект системы и выбор места
Проект гелиосистемы включает в себя расчёты необходимого размера солнечной пластины. Как было сказано выше, размер батареи, как правило, ограничен дорогостоящими фотоэлементами.
Гелиобатарея должна устанавливаться под определённым углом, который обеспечил бы максимальное попадание на кремниевые пластины солнечных лучей. Наилучший вариант – батареи, которые могут менять угол наклона.
Место установки солнечных пластин может быть самым разнообразным: на земле, на скатной или плоской крыше дома, на крышах подсобных помещений.
Единственное условие – батарея должна быть размещена на солнечной, не затененной высокой кроной деревьев стороне участка или дома. При этом оптимальный угол наклона необходимо вычислить по формуле или с применением специализированного калькулятора.
Угол наклона будет зависеть от месторасположения дома, времени года и климата. Желательно, чтобы у батареи была возможность менять угол наклона вслед за сезонными изменениями высоты солнца, т.к. максимально эффективно они работают при падении солнечных лучей строго перпендикулярно поверхности.
Для европейской части стран СНГ рекомендуемый угол стационарного наклона 50 – 60 º. Если в конструкции предусмотрено устройство для изменения угла наклона, то в зимний период лучше располагать батареи под 70 º к горизонту, в летнее время под углом 30 º
Расчёты показывают, что 1 квадратный метр гелиосистемы даёт возможность получить 120 Вт. Поэтому путём расчетов можно установить, что для обеспечения среднестатистической семьи электроэнергией в количестве 300 кВт в месяц необходима гелиосистема минимум в 20 квадратных метров.
Сразу установить такую гелиосистему будет проблематично. Но даже монтаж 5-ти метровой батареи поможет сэкономить электроэнергию и внести свой скромный вклад в экологию нашей планеты. Советуем также ознакомиться с принципом расчета необходимого количества .
Солнечная батарея может использоваться в качестве резервного энергоисточника при частом отключении централизованного энергоснабжения. Для автоматического переключения необходимо предусмотреть систему бесперебойного питания.
Подобная система удобна тем, что при использовании традиционного источника электроэнергии одновременно производится зарядка . Оборудование обслуживающее гелиобатарею размещается внутри дома, поэтому необходимо предусмотреть для него специальное помещение.
Размещая батареи на наклонной крыше дома, не забывайте об угле наклона панели, идеальный вариант, когда у батареи есть устройство для сезонного изменения угла наклона
Монтаж солнечной батареи по шагам
Выбрав место для размещения солнечной панели и оборудования для обслуживания гелиосистемы, а также имея в наличии все требуемые материалы и инструменты, можно начинать монтаж батареи.
При монтаже необходимо соблюдать технику безопасности, особенно осуществляя на крышу дома. Рассмотрим пошаговый алгоритм, как сделать солнечную батарею.
Шаг #1 – пайка контактов кремниевых пластин
Монтаж самодельной солнечной батареи часто начинается с пайки проводников фотоэлементов. Безусловно, если у вас есть возможность, то лучше всего купить фотоэлементы сразу с проводниками, т.к. пайка – очень непростая и кропотливая работа, занимающая много времени.
Пайка осуществляется следующим образом:
- Берётся кремниевый фотоэлемент без проводников и металлическая полоса-проводник.
- Проводники нарезаются при помощи картонной заготовки, их длина в 2 раза больше, чем размер кремниевой пластины.
- Проводник аккуратно выкладывается на пластину. На один элемент – два проводника.
- На место, где будет производиться спайка, необходимо нанести кислоту для работы с паяльником.
- Произвести пайку при помощи паяльника, аккуратно присоединив проводник к пластине.
В процессе пайки нельзя давить на силикатный элемент, т.к. он очень хрупкий и может разрушиться! Если вам посчастливилось, и вы приобрели фотоэлементы с готовыми контактами, то вы избавите себя от долгой и сложной работы, переходя сразу к изготовлению каркаса для будущей батареи.
Пайка контактов для бракованных фотоэлементов группы В производится так же и в том же направлении, что и для целых пластин
Шаг #2 – изготовление каркаса для солнечной батареи
Каркас – это место, куда будут устанавливаться фотоэлементы. Для изготовления каркаса берутся алюминиевые уголки и рейки, из которых складываются рамки. Рекомендуемый размер уголка – 70-90 мм.
На внутреннюю часть металлических уголков наносится силиконовый герметик. Герметизацию уголков необходимо произвести тщательно, от этого зависит долговечность всей конструкции.
После того, как алюминиевая рамка готова, приступаем к изготовлению заднего корпуса. Задний корпус представляет собой деревянный ящик из ДСП с невысокими бортиками.
Высокие борта будут создавать тень на фотоэлементах, поэтому их высота не должна превышать 2 см. Бортики привинчиваются при помощи саморезов и шуруповёрта.
Галерея изображений
Фото из
Изготовление корпуса для солнечной батареи
Вентиляционные отверстия в бортиках корпуса
Подложка для крепления кремниевых пластин
Окрашивание деталей корпуса для гидроизоляции
На дне ящика-корпуса из ДСП делаются вентиляционные отверстия. Расстояние между отверстиями примерно 10 см. В алюминиевую раму устанавливается прозрачный элемент (оргстекло, антибликовое стекло, плексиглас).
Прозрачный элемент прижимается и фиксируется, его крепление осуществляется при помощи метизов: 4 по углам, а также по 2 с длинных и по 1 с короткой стороны рамы. Метизы крепятся шурупами.
Каркас для гелиобатареи готов и можно приступать к самой ответственной части – монтажу фотоэлементов. Перед монтажом необходимо очистить оргстекло от пыли и обезжирить спиртсодержащей жидкостью.
Шаг #3 – монтаж кремниевых пластин-фотоэлементов
Монтаж и пайка кремниевых пластин – самая трудоёмкая часть работы по созданию солнечной панели своими руками. Сначала раскладываем фотоэлементы на оргстекло синими пластинами вниз.
Если вы впервые собирайте батарею, то можно воспользоваться подложкой для нанесения разметки, чтобы расположить пластины ровно на небольшом (3-5 мм) расстоянии друг от друга.
- Производим пайку фотоэлементов по следующей электросхеме: “+” дорожки расположены на лицевой стороне пластины, “-” – на обратной. Перед пайкой аккуратно наносит флюс и припой, чтобы соединить контакты.
- Производим пайку всех фотоэлементов последовательно рядами сверху вниз. Ряды затем должны быть также соединены между собой.
- Приступаем к приклеиванию фотоэлементов. Для этого наносим небольшое количество герметика на центр каждой кремниевой пластины.
- Переворачиваем получившиеся цепочки с фотоэлементами лицевой стороной (там, где синие пластины) вверх и размещаем пластины по разметке, которую нанесли ранее. Осторожно прижимаем каждую пластину, чтобы зафиксировать её на своём месте.
- Контакты крайних фотоэлементов выводим на шину, соответственно “+” и “-“. Для шины рекомендуется использовать более широкий проводник из серебра.
- Гелиобатарею необходимо оснастить блокирующим диодом, который соединяется с контактами и предотвращает разрядку аккумуляторов через конструкцию в ночное время.
- В дне каркаса сверлим отверстия для вывода проводов наружу.
Провода необходимо прикрепить к каркасу, чтобы они не болтались, сделать это можно используя силиконовый герметик.
Галерея изображений
Фото из
Подготовка кремниевых пластин к пайке
Сушка избавленных от воска элементов батареи
Вычерчивание абриса пластинок на подложке
Процесс пайки фотоэлектрических элементов батареи
Соединение кремниевых пластин в солнечную батарею
Соединение кремниевых пластин с лицевой стороны
Устройство медных токоведущих шин прибора
Проверка работоспособности части батареи
Шаг #4 – тестирование батареи перед герметизацией
Тестирование солнечной панели необходимо проводить до её герметизации, чтобы иметь возможность устранить неисправности, которые часто возникают во время пайки. Лучше всего производить тестирование после спайки каждого ряда элементов – так значительно проще обнаружить, где контакты соединены плохо.
Для тестирования вам понадобиться обычный бытовой амперметр. Измерения необходимо проводить в солнечный день в 13-14 часов, солнце не должно быть скрыто облаками.
Выносим батарею на улицу и устанавливаем в соответствии с ранее рассчитанным углом наклона. Амперметр подключаем к контактам батареи и проводим измерение тока короткого замыкания.
Смысл тестирования заключается в том, что рабочая сила электрического тока должна быть на 0,5-1,0 А ниже, чем ток короткого замыкания. Показания прибора должны быть выше 4,5 А, что говорит о работоспособности гелиобатареи.
Если тестер выдаёт меньшие показания, то где-то наверняка нарушена последовательность соединения фотоэлементов.
Обычно самодельная , сконструированная из фотоэлементов группы В выдаёт показания 5-10 А, что на 10-20% ниже, чем у солнечных панелей промышленного производства.
Галерея изображений
Фото из
Шаг 9: После проверки работоспособности частей батареи, запаянных на подложке, их располагают в корпусе
Шаг 10: Подложки с пластинами внутри корпуса фиксируются на четыре шурупа. Провод, соединяющий части батареи, выводится через вентиляционные отверстия
Шаг 11: К каждой из половин сооружаемой батареи последовательно подключается диод Шоттки. Его минус подключается к плюсу системы
Шаг 12: Для вывода проводов из корпуса высверливается отверстие. Провода скреплены узлом, чтобы не болтались, и зафиксированы герметиком
Шаг 13: После нанесения герметика необходимо сделать технологический перерыв, отпущенный на полимеризацию состава
Шаг 14: К выведенному из солнечной батареи проводу подсоединяется двухконтактный разъем. Принадлежащая ему розетка крепится на аккумуляторе прибора, который будет заряжать батарея
Шаг 15: После сборки обеих частей прибора и вывода силовой линии наружу батарею закрывают заранее подготовленным экраном
Шаг 16: Перед герметизацией стыков гелиоприбора еще раз проводится проверка работоспособности, чтобы вовремя устранить отошедшие контакты, если они будут обнаружены
Установка обеих частей батареи в подготовленный корпус
Крепление основы солнечной батареи внутри корпуса
Установка блокирующего диода Шоттки
Вывод из корпуса наружу проводов прибора
Ожидание затвердевания герметика
Крепление двухконтактного разъема к проводу
Установка светопропускающего экрана на прибор
Контроль работоспособности перед герметизацией
Шаг #5 – герметизация уложенных в корпус фотоэлементов
Герметизацию можно производить, только убедившись, что батарея работает. Для герметизации лучше всего использовать эпоксидный компаунд, но учитывая, что расход материала будет большой, а стоимость его составляет примерно 40-45 долларов. Если дороговато, то вместо него можно применять всё тот же силиконовый герметик.
Используя силиконовой герметик, отдавайте предпочтения тому, на упаковке которого указано, что он подходит для использования при минусовых температурах
Существует два способа герметизации:
- полная заливка, когда панели заливаются герметиком;
- нанесение герметика на пространство между фотоэлементами и на крайние элементы.
В первом случае герметизация будет более надёжной. После заливки герметик должен схватиться. Затем сверху устанавливается оргстекло и плотно прижимается к пластинам, покрытым силиконом.
Для обеспечения амортизации и дополнительной защиты между задней поверхностью фотоэлементов и каркасом из ДСП многие мастера советуют устанавливать прокладку из жёсткого поролона шириной 1,5-2,5 см.
Делать это необязательно, но желательно, учитывая, что кремниевые пластины достаточно хрупкие и легко повреждаются.
После установки оргстекла на конструкцию ставят груз, под действием которого происходит выдавливание пузырьков воздуха. Солнечная батарея готова и после повторного тестирования её можно устанавливать в заранее выбранное место и подключать к гелиосистеме вашего дома.
Выводы и полезное видео по теме
Обзор фотоэлементов, заказанных в китайском интернет-магазине:
Видео-инструкция по изготовлению солнечной батареи:
Сделать солнечную батарею своими руками – не простая задача. КПД большинства таких батарей ниже, чем у панелей промышленного производства на 10-20%. Самое важное при конструировании солнечной батареи – правильно выбрать и установить фотоэлементы.
Не пытайтесь сразу создать огромную по площади панель. Попробуйте сначала соорудить маленький прибор, чтобы понять все нюансы этого процесса.
У вас есть практические навыки создания солнечных батарей? Поделитесь, пожалуйста, своим опытом с посетителями нашего сайта – пишите комментарии в расположенном ниже блоке. Там же можно задать вопросы по теме статьи.
sovet-ingenera.com
Солнечная батарея своими руками — принцип и порядок сборки в домашних условиях
В получении электроэнергии альтернативными методами в последнее время прослеживается тенденция к активному развитию. И это несмотря на то что подобный подход пока еще остается весьма затратным, если планируется приобрести готовое оборудование. Ждать быстрой окупаемости сделанных вложений не приходится.
Солнечная батарея своими рукамиТем не менее, многие рачительные хозяева домов и даже квартир все пристальнее рассматривают такие возможности. А некоторые из них идут по пути самостоятельного создания необходимого оборудования, хотя бы в качестве стартового эксперимента. Так, например, солнечная батарея своими руками вполне может быть создана в домашних условиях, так как сегодня для ее сборки можно приобрести все необходимое. Тем более что существует несколько способов сборки солнечных панелей из разных комплектующих.
Тем, кто хочет попробовать самостоятельно собрать такой источник электроэнергии, и переназначена настоящая публикация.
Что такое солнечная батарея, и как она работает?
Общие понятия о принципе получения электричества от солнечной энергии
У людей, решивших собрать солнечную батарею, возникает немало вопросов, а для многих эта задача видится и вовсе не выполнимой из-за кажущейся сложности ее конструкции. Однако, на самом деле особых трудностей в ее сборке нет. И в этом можно убедиться, изучив схему и рассмотрев, как выполняет работу мастер, изготовивший не один подобный прибор.
Солнечная батарея представляет собой совокупность фотоэлектрических преобразователей солнечной энергии в электрическую.
Солнечная батарея – это множество правильно соединенных между собой фотоэлементов. Каждый из них обладает невысокими генерирующими способностями, но в совокупности получаются весьма приличные показатели выработанной мощности.Отдельные фотоэлементы соединены в единую панель и защищены с двух сторон материалами, стойкими к ультрафиолету, влаге и другим атмосферным явлениям. Это важно, так как батареи чаще всего эксплуатируются на открытом незащищенном пространстве — это может быть крыша здания, балконное ограждение или же поляна около дома.
Общая конструкция системы получения электрической энергии от солнечной представляет собой целый ряд приборов и устройств, соединенных в единую цепь:
Примерная схема системы выработки потребительской электрической энергии от солнечной- Пластины-преобразователи — это полупроводниковые фотоэлементы, обладающие способностью генерировать постоянный ток под воздействием света. Пластины соединяются между собой по определенной схеме специальными шинами (плоскими проводниками), и собираются в батарею в общем корпусе.
- Панели-батареи, собранные из фотоэлементов, подключаются к прибору-контролеру с подобранными параметрами тока и напряжения, необходимыми для зарядки аккумулятора.
- Аккумулятор или целая батарея таких аккумуляторов накапливает заряд.
- Специальный инвертор преобразует постоянный ток в переменный с напряжением в 220 В (если этот необходимо).
Такая череда приборов используются в схеме в том случае, когда планируется отдельные постоянные точки потребления или даже полностью весь дом запитать от солнечной энергии. Накопленная в аккумуляторе за день энергия может быть использована в пасмурные дни или в темное время суток. Применяются и более простые схемы, когда солнечные батареи выступают лишь вспомогательным источником питания, и накопление энергии не требуется. Панель в таком случае может быть непосредственно подключена к прибору-потребителю. Однако, этот вариант менее надежен, так как стабильность питания будет полностью зависеть от наличия солнца в данный момент.
Использование солнечных батарей для полного снабжения дома энергией актуально в регионах, где количество солнечных дней в течение года преобладает. Этим обычно «славятся» южные регионы страны. В других условиях они чаще всего применяются в качестве дополнительных источников электроснабжения.
Три основных разновидности фотоэлектрических модулейМодули солнечных батарей, из которых собирается панель, подразделяются на три типа:
— монокристаллический;
— поликристаллический;
— аморфный (тонкопленочный).
От особенностей структурного строения пластин напрямую зависит эффективность конструкции, а также ее общая стоимость.
Монокристаллический и поликристаллический вариант солнечной батареи
Монокристаллические пластины изготавливаются из монокристаллов кремния, выращенных по методу Чохральского. Они отличаются высоким качеством и обладают неплохим (по меркам фотоэлементов) КПД, равным примерно 20÷22%. Из-за этого и стоимость их достаточно высока.
Солнечные лучи, попадая на монокристаллическую поверхность, способствуют возникновению направленного движения свободных электронов. Пластины с двух сторон подсоединены к шинам, которые затем подключаются к общей электрической цепи системы.
Высокий КПД этого типа пластин объясняется тем, что солнечные лучи равномерно рассеиваются по поверхности кристалла.
Поликристаллические фотоэлементы изготавливаются из полупроводника, имеющего поликристаллическую структуру. Именно этот тип батареи считается оптимальным для создания системы преобразования солнечной энергии. Стоимость элементов, а как следствие — и целых батарей получается ниже по сравнению с монокристаллическими приборами. Это обуславливается особенностями производства фотоэлементов, так как при их изготовлении применяются фрагменты, оставшиеся от монокристаллов.
Если сравнивать два этих типа изделий, то можно выделить следующие различия, выявленные тестированием независимых компаний:
- Поликристаллические пластины отличаются по внешнему виду от монокристаллов, так как имеют неоднородный по цвету окрас поверхностей, с перемежением темных и светлых участков.
- В процессе эксплуатации у всех фотоэлементов происходит постепенное снижение мощности. Так, после года работы у монокристаллов она снижается на 3%, а у поликристаллических элементов — на 2%.
- Суммарное количество электроэнергии, выработанное монокристаллическим модулем, примерно на 30% выше, чем у поликристаллических элементов, при их одинаковой площади.
- Стоимость поликристаллов на 10÷15 % ниже монокристаллических батарей.
Аморфные солнечные модули
Этот тип элементов представляет собой плотную гибкую пленку, значительно упрощающую процесс монтажа батарей.
На современном рынке представлены три поколения подобных фотоэлементов:
Гибкие пленочные фотоэлементы на основе аморфного кремния имеют ряд преимуществ и значительно удобнее в работе- Элементы первого поколения являются однопереходными. Они имеют низкий КПД — всего 5% и относительно небольшой срок эксплуатации — не более 10 лет.
- Пленка второго поколения тоже однопереходного типа, но уровень КПД у нее повышен до 8%, увеличен и срок эксплуатации.
- Тонкопленочные батареи третьего поколения обладают КПД до 12%, и обладают длительным сроком службы, составляя конкуренцию кристаллическим вариантам.
Несмотря на не выдающиеся характеристики, самыми популярными остаются однопереходные тонкопленочные модули второго поколения. Они доступны по цене и обладают приличной мощностью, которая вполне может конкурировать с кристаллическими вариантами батарей.
Сравнение солнечных фотоэлементов
Если сравнивать кристаллические и пленочные батареи, то у последних существует ряд существенных преимуществ, благодаря которым часто предпочтение отдается именно им:
- Аморфные пленочные элементы лучше реагируют на изменение температуры, в частности, на ее повышение. В солнечные месяцы года этот тип батарей способен произвести большее количество энергии по сравнению с кристаллическими аналогами — те при нагреве способны потерять до 20% мощности.
- Пленочные батареи продолжают выработку энергии даже при рассеянном солнечном свете, в отличие от кристаллов, которые не генерируют энергию в пасмурную погоду. При слабом или рассеянном свете аморфная пленка способна вырабатывать до 20% энергии от своих номинальных показатели. Не слишком много, но лучше, чем ничего.
- Стоимость кристаллических панелей гораздо выше, чем пленочных. Причем цена на последние продолжает снижаться из-за активного наращивания объемов их производства.
- Пленочные солнечные батареи имеют меньшее количество дефектов и уязвимых мест. Дело в том, что жёсткие пластины при формировании панели спаиваются между собой, а пленка устанавливается в корпус конструкции в целом виде.
Если подвести итоги и вывести их в таблицу, то сравнительные характеристики пленочных аморфных и жестких кристаллических солнечных фотоэлементов будут выглядеть следующим образом:
Параметры | Кристаллические панели | Аморфные тонкопленочные батареи |
---|---|---|
КПД изделий | 9÷20% | 6÷12% |
Выходное напряжение одного фотоэлемента | Около 0,5 В | Около 1,7 В |
Световой спектр максимальной чувствительности | Ближе к красному цвету, то есть для эффективной работы необходимо яркое солнце. | Ближе к ультрафиолету, то есть восприимчивы и к рассеянному освещению. |
Гибкость | Хрупкие и ломкие, требуют обязательной жесткой основы и надежной защиты от механического воздействия. | Гибкие, легко гнутся, не заламываются. |
Надежность при эксплуатации в экстремальных условиях | Требуют жесткой основы и надежной защиты от механического воздействия. | Более устойчивы к механическим воздействиям, хотя тоже требуют защиты. |
Долговечность | При должной защите, эксплуатируются длительное время, но с годами постепенно снижается эффективность работы изделий. | Качественные изделия, выполненные с соблюдением технологии, выгорают на солнце на 4% за первые 4÷5 лет эксплуатации. Дешевые китайские аналоги могут подвести через 2÷3 года. |
Вес | Тяжелые. | Легкие. |
Необходимо уточнить, что производятся и комбинированные варианты солнечных батарей, то есть состоящие из кристаллических и аморфных элементов. То есть используются по максимуму все преимущества обоих типов. Однако, стоимость подобных изделий весьма высока, поэтому они не настолько популярны, как упомянутые выше батареи.
Что влияет на эффективность солнечных батарей?
Чтобы не удивляться тому, что солнечные батареи работают с разной эффективностью в различные периоды, необходимо выделить факторы, которые влияют на КПД системы. Причем названные ниже моменты действуют на солнечные батареи всех типов, но с различной интенсивностью.
- При повышении температуры производительность любых фотоэлементов панелей снижается.
- При частичном затемнении, например, если солнце попадает только на часть панели, а какое-то количество элементов остается неосвещенным, выходное напряжение падает за счет потерь неосвещенных пластин.
- Панели, оснащенные линзами для концентрирования излучения, становятся совершенно неэффективными в облачную погоду, так как пропадает эффект фокусирования потока света.
- Для достижения высокой эффективности работы солнечной батареи необходим правильный подбор сопротивления нагрузки. Поэтому панели подключаются не напрямую к приборам или аккумулятору, а через управляющий системой контролер, который обеспечит оптимальный режим функционирования батареи.
Недостатки солнечных батарей
У солнечных батарей существует ряд недостатков, узнав о которых многие хозяева жилья сразу отказываются от затеи их приобретения и установки.
Действительно мощная, эффективная солнечная батарея потребует немалой полностью открытой для солнечных лучей площади.- Для получения достаточного количества энергии необходимо установить весьма большое количество батарей довольно больших размеров. Понятно, что для их размещения потребуются большие площади. Многие собственники частных домов используют для их монтажа солнечную сторону крыши.
- Нельзя забывать, что батарея будет работать эффективно, только если ее лицевая сторона будет подвергаться периодической очистке от насевшей пыли, грязи, разводов высохшей дождевой воды. А это значит, что к поверхности необходимо обеспечить удобный и легкий доступ.
- Солнечные батареи недостаточно эффективно функционируют в сумерках и совершенно не работают в ночные часы. Чтобы использовать энергию от них в любое время суток необходимо подключение к нескольким аккумуляторам, которые за солнечный период накапливают энергию.
- Для большого количества аккумуляторов, если система планируется в качестве основного источника энергии, может потребоваться отдельное помещение.
- Солнечная энергия считается экологически чистой, однако сами пластины фотоэлементов содержат в себе такие токсичные вещества, как кадмий, свинец, мышьяк, галлий и т.п. При нагревании конструкции данные вещества могут выделяться не только в окружающую среду, но и проникать в помещения дома, если батареи установлены на крыше или балконе дома. Оптимальным вариантом будет установить систему в отдалении от жилых строений.
- При установке батарей на открытой площадке, для более высокой эффективности их работы, систему часто снабжают специальным фотоэлементом, реагирующим на положение Солнца, и поворотным механизмом, который будет поворачивать их вслед за движением светила. Эффективность повышается, но зато возрастает сложность системы и стоимость реализации проекта.
- Пока что не приходится говорить о высокой эффективности работы подобных систем. Их КПД составляет в самом лучшем случае 20%, остальные 80% воспринятой поверхностью солнечной энергии уходят на нагрев самой батареи, средняя температура которой может достигать 55÷60 градусов. Как уже говорилось выше, при нагреве фотоэлементов, эффективность их работы падает.
- Чтобы предотвратить перегревание батарей, применяют те или иные системы принудительного охлаждения. Например, устанавливаются вентиляторы или насосы, перекачивающие хладагент. Понятно, что такие приборы также требуют электроэнергии, а также периодического обслуживания. Кроме того, они могут значительно снизить надежность работы всей конструкции. Ну а проблема эффективного пассивного охлаждения батарей пока не решается.
Как собрать солнечную батарею в домашних условиях?
Если после изучения представленной выше информации желание заняться изготовлением солнечной батареи не пропало, можно поэкспериментировать, создав и проверив собственное творение. Далее будет подробно рассмотрена сборка панели из монокристаллических пластин.
Монокристаллическая пластина 78×156 мм с двумя токосъемными дорожками на лицевой стороне. Симметрично им, на тыльной стороне пластины линии припаивания шин обозначены фигурными контактными окошками.В показанном примере домашний мастер собирает панель габаритами 750×960 мм, состоящую из 36 жёстких монокристаллических пластин размером мм. Пластины устанавливаются в четыре ряда, по 9 фотоэлементов в каждом. Между фотоэлементами выдерживается зазор порядка 10÷12 миллиметров.
Солнечные батареи, установлены на балконном ограждении, а также закреплены к его остеклению. Такой монтаж будет актуален, если балкон находится на солнечной стороне дома. Красной рамкой выделена панель, монтаж которой будет показан.Иллюстрация | Краткое описание выполняемых операций |
---|---|
Для работы потребуются, прежде всего, сами пластины. Мастер рекомендует приобретать их с запасом, так как они могут иметь разные параметры выходного напряжения, а из них необходимо будет выбрать 36 штук, имеющих наиболее близкие друг к другу показатели. Шина — это медная луженая лента, то есть уже покрытая оловом, что упрощает ее пайку. Потребуется порядка 10 метров узкой шины шириной в 1,6 мм и 2 метра широкой, шириной в 5 мм. Для электромонтажных работ необходимо подготовить обычный паяльник на 40 Вт. флюс для пайки — это канифоль, растворенная в спирте, спирт для обезжиривания поверхностей под пайку и их последующей очистки от остатков флюса, ватные диски и палочки. В качестве основы для монтажа всего модуля в данном случае используется акриловое стекло толщиной 5 мм. Для последующей герметизации фотоэлементов мастер решил использовать прочную бесцветная прозрачная поливинилхлоридную пленку ORACAL®751, которая часто применяется для закрепления рекламы на транспортных средствах. | |
Несколько слов о том, почему выбрана ширина шины именно 1,6 мм. Металл имеет свойство при нагревании расширяться, а при остывании, соответственно, сжиматься. На солнечной батарее этот процесс будет происходить постоянно, то есть днем припаянные шины будут увеличиваться в размерах, а ночью — наоборот, что не особо полезно для конструкции. На опыте мастер испытал ленту шириной в 2 мм, и все-таки остановил свой выбор именно на ширине 1,6 мм. По токопроводящим качествам эти шины не особо отличаются между собой, а более узкая все же меньше повержена линейной деформации. | |
Подготовив все необходимое, имеет смысл в первую очередь произвести сортировку пластин. Как говорилось выше, несмотря на то, что это одна модель, они зачастую могут иметь разные показатели в практической работе. А для гармоничной работы батареи значения вырабатываемого напряжения должны быть максимально близкими друг к другу. Например, в данном случае при проведении проверки обнаружилось, что фотоэлементы в равных условиях (при искусственном освещении) могут вырабатывать от 0,19 до 0,35 вольт. Лучше, если в одной панели будут собраны элементы, имеющие максимально близкие значения, скажем, от 0,30 до 0,33 вольт. Если в комплексе будет установлен один или два элемента, значительно отличающиеся по выходному напряжению, то они будут создавать никому не нужное сопротивление, и станут перегреваться. Таким образом, отбраковываются пластины, явно выпадающие из общей массы. | |
При монтаже пластин между ними будет оставляться зазор в 10÷12 мм. Он нужен для того, чтобы пленка, фиксирующая элементы на акриловом стекле, удерживала их со всех сторон. | |
Далее, необходимо уложить на столе две пластины на расстоянии в 10 мм, и по ним замерить, какой длины необходимо нарезать узкие шины. Как можно видеть на внешней стороне пластин для скрепления предусмотрены две металлические токосъемные полосы, а на обратной ее стороне места фиксации указаны точечно, окошками. | |
На лицевой стороне пластины от ее верхнего края необходимо отступить примерно 3 мм. | |
На обратной стороне второй панели шина также должна не доходить до нижнего края на эти же 2÷3 мм. | |
После определения длины одной соединительной шины, остальные соединительные элементы отмеряются по ней. Для каждых двух пластин потребуется по два отрезка шины, то есть всего нужно 72 штуки. В нарезанном виде шины выглядят, как показано на фото. Вовсе не обязательно заготавливать сразу все отрезки — их можно нарезать по ходу работы. Однако если они все-таки будут заготовлены все сразу, то рекомендовано их собрать и сцепить резинкой. Так они не потеряются, и не будут мешаться на столе. | |
Сначала шины припаиваются к лицевой стороне всех пластин. Но перед началом пайки металлические токосъемные полосы на пластинах необходимо подготовить, обезжирив спиртом. Для этой работы удобно использовать ватные палочки — их обмакивают в спирт и проходятся по полоске. Этот процесс необходим для повышения качества пайки. | |
Следующим подготовительным этапом идет нанесение на очищенные спиртом полоски канифольного флюса. Лучше, если он будет налит в эластичную емкость в виде маркера (клеевого карандаша) с мягким наконечником. Так будет легче работать, при необходимости выдавливая и распределяя необходимое количество состава. | |
Следующим шагом идет припаивание шин к внешней стороне пластин. Шина укладывается на металлическую контактную полоску и выравнивается. Далее, придерживая бо́льшую часть шины, аккуратно прижав ее к полосе, ее верхнюю сторону фиксируют паяльником на 20÷30 мм по длине. Дополнительный припой при этом не используется – вполне достаточно слоя лужения на самой шине. Теперь она закреплена и не сможет сдвинуться, поэтому ее оставшуюся длинную сторону закрепить на поверхности будет совсем просто. | |
Для этого пластину необходимо повернуть к себе противоположной стороной, так чтобы длинная часть шины оказалась под рукой. Придерживая шину и слегка ее натягивая, по ней аккуратно проводят паяльником, следя за тем, чтобы он не соскользнул в сторону. Луженая лента хорошо припаивается к правильно подготовленной поверхности — достаточно один раз без спешки провести по ней хорошо разогретым паяльником. Если на ленте останутся заусеницы, то их сразу же необходимо загладить, так как эта сторона пластин должна быть прижата к акриловому стеклу. | |
Припаяв обе ленты к пластине, их необходимо протереть спиртом с помощью ватной палочки или диска. Необходимо удалить с поверхности весь оставшийся флюс. | |
Таким же образом последовательно подготавливаются все 36 пластин, или же только 9 фотоэлементов, чтобы собрать одну из четырех полос солнечной панели. Здесь каждый мастер поступает так, как ему будет удобнее. | |
Далее будет рассмотрена сборка подготовленных фотоэлементов в одну полосу. Таким же способом производится и соединение остальных трех полос солнечной панели. | |
Вначале берется пластина, которая будет первой в полосе. Она укладывается на стол лицевой стороной вниз, вместе с припаянными к ней шинами. Затем полосы под пайку, выделенные на обратной стороне пластины контактными окошками, обрабатывается спиртом, а потом флюсом. Далее, отступив от края примерно 3 мм по линии, проходящей через окошки, укладывается отрезок шины, и по тому же способу, что и с внешней стороны, припаивается к поверхности. Свободные концы шин должны расположиться в противоположном направлении относительно припаянных к лицевой поверхности – они будут нужны при коммутации всего ряда элементов в общую батарею широкими шинами. | |
Теперь необходимо соединить между собой первую и вторую пластины ряда. Для этого концы шин, припаянных к лицевой стороне первой пластины, необходимо вывести на тыльную сторону второй пластины. Пластины при этом размещаются параллельно друг другу на установленном расстоянии (10 мм). Для удобства можно на рабочем столе заранее выполнить разметку, то есть сделать своеобразный шаблон взаимного расположения пластин. | |
Точки припаивания контактов обрабатываются спиртом, и затем на них наносится флюс. | |
Теперь можно осуществить припаивание шин. Для этого по ним также аккуратно, не торопясь, проводят разогретым паяльником. После окончания пайки обеих шин, их также необходимо протереть спиртом для удаления оставшегося флюса. | |
Далее, таким же образом коммутируется третья и все последующие пластины ряда. В результате должно получиться четыре полосы по 9 фотоэлементов, соединенных так, как было показано на иллюстрациях. | |
Готовые, спаянные ряды фотоэлементов поочередно укладываются на заранее подготовленное акриловое стекло необходимого размера. От краев элементов до края стекла должно быть выдержано расстояние в 50÷60 мм. На стекле ряды временно фиксируются короткими полосками прозрачного скотча. | |
«Золотое правило» последовательной коммутации источников питания постоянного тока: плюс предыдущего элемента соединен с минусом последующего – и так далее. В рядах это правило соблюдено. Теперь очень важно его не нарушить и при укладке рядов в батарею. Так, выступающие слева отрезки шин первого и третьего ряда должны быть припаяны на внешней стороне панели, которая в данном случае повернута к акриловой поверхности. Во втором и четвертом ряду должны выступать концы шин, зафиксированные на тыльной светлой стороне пластин. Если допустить ошибку, то последовательное соединение нарушится, и батарея работать не будет. | |
В результате конструкция уложенной панели должна будет выглядеть следующим образом. Когда все ряды будут закреплены на стекле скотчем, их необходимо объединить в одну систему. | |
Электрическое соединение осуществляется по представленной схеме. В результате сверху окажется «плюс», снизу «минус». | |
В качестве соединительных элементов используется широкие шины – это хорошо показано на схеме выше. К ним припаиваются выступающие концы тонких шин. Излишки после припаивания следует откусить кусачками. | |
На этой фото хорошо показана крайняя точка коммутации шин. Закончив работу, панель необходимо проверить на работоспособность с помощью тестера, переключив его на вольтметр и установив щупы на плюс и минус. | |
Проверку панели можно сначала произвести на рабочем столе – больших показателей не будет, но собранная панель продемонстрирует, что она «живая». А затем можно провести проверку, вынеся батарею на солнце. | |
К крайним плюсовой и минусовой шинам закреплены щупы мультитестера. | |
Даже при облачной погоде на холостом ходу батарея выдает 19,4 вольт — это говорит о правильности соединения панелей. | |
Солнца на момент проверки не было, и ток невелик, всего около 0,5 ампера. Но даже в пасмурную погоду батарея вырабатывает около 10 ватт энергии. | |
Параллельно рекомендуется проверить пластины на перегрев — это несложно прочувствовать тыльной стороной ладони. Если отдельные пластины на общем фоне явно перегреваются, то их желательно сразу же заменить – это пока сделать несложно. | |
Если батарея работает нормально, то можно ее окончательно герметизировать — закатывать в пленку. Эксплуатационный срок этой пленки семь лет, но как показывает практика, она отлично функционирует и дольше. Пленка имеет клеевой слой, закрытый защитной подложкой, которая снимается по мере наклеивания покрытия на фотоэлементы и акриловое стекло. | |
Первое, что необходимо сделать — это разложить пленку сверху конструкции и выровнять край, от которого начнется ее наклеивание. От того, насколько будет выровнен край, зависит качество приклеивания всего полотна. Должна быть достигнута полная герметизация, без складок и пустот, так как пленка предназначена для надежной защиты фотоэлементов от любых внешних воздействий. | |
Далее, необходимо аккуратно отделить защитный слой от пленки по всему краю, примерно на 40 мм, сразу закрепив ее на стекле. | |
Эта операция проводится очень аккуратно, при приклеивании пленка разравнивается и разглаживается. Здесь необходимо помнить, что отклеить и выровнять определенный участок пленки — уже не получится, поэтому необходимо делать работу качественно сразу. Пленку нельзя натягивать, но в то же время она и не должна собираться складками. | |
Защитная подложка подгибается вниз и по мере приклеивания постепенно снимается. Освободив 20÷30 мм пленки, ее приглаживают к фотоэлементам и просветам между ними, то есть к акриловому стеклу. | |
Процесс закатывания батареи в пленку — длительный и кропотливый, поэтому необходимо набраться терпения и выполнять его, не торопясь. Если пленка все-таки замялась или ушла в сторону, ее нельзя отклеивать, так как повредятся фотоэлементы. В этом случае необходимо вырезать и наклеить сверху уже закрепленной пленки дополнительный фрагмент. Главное — закрыть всю поверхность батареи. На этой иллюстрации показан закатанный в пленку край панели. Хорошо видно, что идеальная гладкость не требуется, главное — плотное прилегание пленки по всей площади. | |
Когда пленка будет наклеена, можно проводить испытания готовой панели. Для этого батарею необходимо вынести на солнце и снова подключить к ней тестер. | |
Как можно видеть, батарея выдает напряжение на выходах почти 20 вольт. Затем проверяется ток короткого замыкания — он составил 3.94 ампер. А это уже, ни много, ни мало – почти 80 ватт. | |
Для проверки под нагрузкой к батарее через амперметр была подключена лампочка на 24 В. Итог на фотографии – горит хоть и не в полный накал, но достаточно ярко. |
Многие мастера, кроме стекла и пленки, используют еще и обрамление батареи, одевая ее в жесткую раму. Это придает конструкции необходимую прочность и повышает ее надежность.
Если планируется собрать и использовать несколько солнечных батарей, то их соединяют или последовательно — для увеличения напряжения на выходе, или параллельно – так можно добиться более высоких показателей тока и суммарной мощности
Комплекс панелей через контроллер подключается к аккумулятору — накопителю энергии, а уже от него идет распределение на точки потребления, напрямую или через инвертор.
Узнайте, как сделать солнечный коллектор своими руками, из нашей новой статьи на нашем портале.
* * * * * * *
Итак, как можно видеть из представленной информации, батарею вполне можно собрать своими руками. Потребуется наличие некоторых знаний электротехники и монтажа, усидчивость и внимательность.
Другое дело — что предварительно стоить очень тщательно взвесить ожидаемый эффект от батареи и стоимость комплектующих и всего необходимого для системы оборудования. Насколько система получится рентабельной, тем более с учетом местных климатических условий? Не превратится ли ее создание просто в «игрушку» для деятельного мужчины среднего возраста?
Возможно, некоторые вопросы по этому поводу снимет размещенный ниже видеосюжет:
Видео: Основные ошибки, допускаемые начинающими при планировании создания домашних солнечных электростанций
stroyday.ru
Рассчитываем и изготавливаем солнечные батареи своими руками
Уже не одно десятилетие человечество ищет альтернативные источники энергии, способные хотя бы частично заменить существующие. И самыми перспективными из всех на сегодняшний день представляются два: ветро‑ и солнечная энергетика.
Правда, ни тот ни другой не могут предоставить непрерывного производства. Это связано с непостоянством розы ветров и суточно‑погодно‑сезонными колебаниями интенсивности солнечного потока.
Сегодняшняя энергетика предлагает три основных метода получения электрической энергии, но все они тем или иным образом вредны для окружающей среды:
- Топливная электроэнергетика — самая экологически грязная, сопровождается значительными выбросами в атмосферу углекислого газа, сажи и бесполезной теплоты, вызывая сокращение озонового слоя. Добыча топливных ресурсов для нее также наносит значительный вред природе.
- Гидроэнергетика связана с очень значительными ландшафтными изменениями, затоплением полезных земель, причиняет ущерб рыбным ресурсам.
- Атомная энергетика — самая экологически чистая из трёх, но требует очень значительных расходов на поддержание безопасности. Любая авария может быть связана с нанесением непоправимого долголетнего вреда природе. К тому же требует специальных мер по утилизации отходов использованного топлива.
Солнечная батарея — что это такое
Строго говоря, получить электроэнергию от солнечного излучения можно несколькими способами, но большинство из них используют промежуточное её преобразование в механическую, вращающую вал генератора и только затем в электрическую.
Такие электростанции существуют, они используют в работе двигатели внешнего сгорания Стирлинга, имеют неплохой КПД, но у них есть и существенный недостаток: чтобы собрать как можно больше энергии солнечного излучения, требуется изготовление огромных параболических зеркал с системами слежения за положением солнца.
Надо сказать, что существуют решения, позволяющие улучшить ситуацию, но все они достаточно дорогостоящие.
Есть методы, дающие возможность прямого преобразования энергии света в электрический ток. И хотя явление фотоэффекта в полупроводнике селене было открыто уже в 1876 году, но только в 1953 году, с изобретением кремниевого фотоэлемента, появилась реальная возможность создания солнечных батарей для получения электроэнергии.
В это время уже появляется теория, позволившая объяснить свойства полупроводников, и создать практическую технологию их промышленного производства. К сегодняшнему дню это вылилось в настоящую полупроводниковую революцию.
Работа солнечной батареи основана на явлении фотоэффекта полупроводникового p-n перехода, по сути представляющего собой обычный кремниевый диод. На его выводах при освещении возникает фото‑эдс величиной 0,5~0,55 В.
При использовании электрических генераторов и батарей необходимо учитывать различия, которые существуют между фазным и линейным напряжением. Подключая трехфазный электродвигатель в соответствующую сеть, можно в три раза увеличить его выходную мощность.Следуя определенным рекомендациям, с минимальными затратами по ресурсам и времени можно изготовить силовую часть высокочастотного импульсного преобразователя для бытовых нужд. Изучить структурные и принципиальные схемы таких блоков питания можно здесь.
Конструктивно каждый элемент солнечной батареи выполнен в виде кремниевой пластины площадью в несколько см2, на которой сформировано множество соединённых в единую цепь таких фотодиодов. Каждая такая пластина является отдельным модулем, дающим при солнечном освещении определённое напряжение и ток.
Соединяя такие модули в батарею и комбинируя параллельно‑последовательное их подключение, можно получить широкий диапазон значений выходной мощности.
Преимущества и недостатки этого вида энергии
Основные недостатки солнечных батарей:
- Большая неравномерность и нерегулярность энергоотдачи в зависимости от погоды, и сезонной высоты солнца.
- Ограничение мощности всей батареи, если затенена хотя бы одна её часть.
- Зависимость от направления на солнце в различное время суток. Для максимально эффективного использования батареи нужно обеспечивать её постоянную направленность на солнце.
- В связи с вышесказанным, необходимость аккумулирования энергии. Наибольшее потребление энергии приходится на то время, когда выработка её минимальна.
- Большая площадь, требующаяся для конструкции достаточной мощности.
- Хрупкость конструкции батареи, необходимость постоянной очистки её поверхности от загрязнений, снега и т. п.
- Модули солнечной батареи работают наиболее эффективно при 25°C. Во время работы же они нагреваются солнцем до значительно более высокой температуры, сильно снижающей их эффективность. Чтобы поддерживать КПД на оптимальном уровне, необходимо обеспечивать охлаждение батареи.
Следует заметить, что постоянно появляются разработки солнечных элементов, использующих новейшие материалы и технологии. Это позволяет постепенно устранять недостатки, присущие солнечным батареям или уменьшать их влияние. Так, КПД новейших элементов, использующих органические и полимерные модули, достигает уже 35% и есть ожидания достижения 90%, а это делает возможным при тех же размерах батареи получить много бòльшую мощность, либо, сохранив энергоотдачу, значительно уменьшить габариты батареи.
Кстати, средний КПД автомобильного двигателя не превышает 35%, что позволяет говорить о достаточно серьёзной эффективности солнечных панелей.Появляются разработки элементов на основе нанотехнологий, одинаково эффективно работающих под разными углами падающего света, что избавляет от необходимости их позиционирования.
Таким образом, уже сегодня можно говорить о преимуществах солнечных батарей по сравнению с другими источниками энергии:
- Отсутствие механических преобразований энергии и движущихся частей.
- Минимальные расходы на эксплуатацию.
- Долговечность 30~50 лет.
- Тишина при работе, отсутствие вредных выбросов. Экологичность.
- Мобильность. Батарея для питания ноутбука и зарядки аккумулятора для светодиодного фонарика вполне поместится в небольшом рюкзаке.
- Независимость от наличия постоянных источников тока. Возможность подзарядки аккумуляторов современных гаджетов в полевых условиях.
- Нетребовательность к внешним факторам. Солнечные элементы можно разместить в любом месте, на любом ландшафте, лишь бы они достаточно освещались солнечным светом.
Конструктивные особенности
В приэкваториальных районах Земли средний поток солнечной энергии составляет в среднем 1,9 кВт/м2. В средней полосе России он находится в пределах 0,7~1,0 кВт/м2. КПД классического кремниевого фотоэлемента не превышает 13%.
Как показывают опытные данные, если прямоугольную пластину направить своей плоскостью на юг, в точку солнечного максимума, то за 12‑часовой солнечный день она получит не более 42% суммарного светового потока из‑за изменения угла его падения.
Это означает, что при среднем солнечном потоке 1 кВт/м2, 13% КПД батареи и её суммарной эффективности 42% удастся получить за 12 часов не более 1000 x 12 x 0,13 x 0,42 = 622,2 Втч, или 0,6 кВтч за день с 1 м2. Это при условии полного солнечного дня, в облачную погоду — значительно меньше, а в зимние месяцы эту величину нужно разделить ещё на 3.
Учитывая потери на преобразование напряжения, схему автоматики, обеспечивающую оптимальный зарядный ток аккумуляторов и предохраняющую их от перезаряда, и прочие элементы можно принять за основу цифру 0,5 кВтч/м2. Этой энергией можно в течение 12 часов поддерживать ток заряда аккумулятора 3 А при напряжении 13,8 В.
То есть для заряда полностью разряженной автомобильной батареи ёмкостью 60 Ач потребуется солнечная панель в 2 м2, а для 50 Ач — примерно 1,5 м2.Для того чтобы получить такую мощность можно приобрести готовые панели, выпускающиеся в диапазоне электрических мощностей 10~300 Вт. Например, одна 100 Вт панель за 12‑ти часовой световой день с учётом коэффициента 42% как раз обеспечит 0,5 кВтч.
Такая панель китайского производства из монокристаллического кремния с очень неплохими характеристиками стоит сейчас на рынке около 6400 р. Менее эффективная на открытом солнце, но имеющая лучшую отдачу в пасмурную погоду поликристаллическая — 5000 р.
При наличии определённых навыков в монтаже и пайке радиоэлектронной аппаратуры можно попробовать собрать подобную солнечную батарею и самому. При этом не стоит рассчитывать на очень большой выигрыш в цене, кроме того, готовые панели имеют заводское качество как самих элементов, так и их сборки.
Но продажа таких панелей организована далеко не везде, а их транспортировка требует очень жёстких условий и обойдётся достаточно дорого. Кроме того, при самостоятельном изготовлении появляется возможность, начав с малого, постепенно добавлять модули и наращивать выходную мощность.
Подбор материалов для создания панели
В китайских интернет‑магазинах, а также на аукционе eBay предлагается широчайший выбор элементов для самостоятельного изготовления солнечных батарей с любыми параметрами.
Ещё в недалёком прошлом самодельщики приобретали пластины, отбракованные при производстве, имеющие сколы или другие дефекты, но существенно более дешёвые. Они вполне работоспособны, но имеют немного пониженную отдачу по мощности. Учитывая постоянное снижение цен, сейчас это уже вряд ли целесообразно. Ведь теряя в среднем 10% мощности, мы теряем и в эффективной площади панели. Да и внешний вид батареи, состоящей из пластин с отколотыми кусочками выглядит довольно кустарно.
Можно приобрести такие модули и в российских онлайн‑магазинах, например, molotok.ru предлагает поликристаллические элементы с рабочими параметрами при световом потоке 1,0 кВт/м2:
- Напряжение: холостого хода — 0,55 В, рабочее — 0,5 В.
- Ток: КЗ — 1,5 А, рабочий — 1,2 А.
- Рабочая мощность — 0,62 Вт.
- Габариты — 52х77 мм.
- Цена 29 р.
Изготовление солнечной батареи для дома своими руками
Для изготовления солнечной панели нам понадобится подходящая рама, которую можно сделать самостоятельно или подобрать готовую. Из материалов для нее лучше всего использовать дюралюминий, он не подвержен коррозии, не боится сырости, долговечен. При соответствующей обработке и покраске для защиты от атмосферных осадков подойдёт и стальная, и даже деревянная.
Совет: Не стоит делать панель очень больших размеров: она будет неудобна в монтаже элементов, установке и обслуживании. К тому же маленькие панели имеют низкую парусность, их можно удобнее разместить под требуемыми углами.Рассчитываем комплектующие
Определимся с размерами нашей рамы. Для зарядки 12-ти вольтового кислотного аккумулятора требуется рабочее напряжение не ниже 13,8 В. Примем за основу 15 В. Для этого нам придётся соединить последовательно 15 В / 0,5 В = 30 элементов.
Совет: Выход солнечной панели следует подключать к аккумулятору через защитный диод во избежание его саморазряда в темное время суток через солнечные элементы. Так что на выходе нашей панели будет: 15 В – 0,7 В = 14,3 В.Чтобы получить зарядный ток 3,6 А, нам необходимо соединить в параллель три таких цепочки, или 30 x 3 = 90 элементов. Это будет нам стоить 90 x 29 р. = 2610 р.
Совет: Элементы солнечной панели соединяются параллельно‑последовательно. Необходимо соблюдать равенство количества элементов в каждой последовательной цепочке.Таким током мы можем обеспечить стандартный режим заряда для полностью разряженного аккумулятора ёмкостью 3,6 x 10 = 36 Ач.
Реально эта цифра будет меньше из‑за неравномерности солнечного освещения в течение дня. Таким образом, для заряда стандартной автомобильной батареи 60 Ач, нам нужно будет соединить параллельно две таких панели.
Эта панель может нам обеспечить электрическую мощность 90 x 0,62 Вт ≈ 56 Вт.
Или в течение 12‑часового солнечного дня с учётом поправочного коэффициента 42% 56 x 12 x 0,42 ≈ 0,28 кВтч.
Разместим наши элементы в 6 рядов по 15 штук. Для установки всех элементов нам потребуется поверхность:
- Длина — 15 x 52 = 780 мм.
- Ширина — 77 x 6 = 462 мм.
Для свободного размещения всех пластин примем габариты нашей рамы: 900×500 мм.
Совет: Если есть готовые рамы с другими габаритами, можно пересчитать количество элементов в соответствии с приведёнными выше намётками, подобрать элементы других типоразмеров, попробовать разместить их, комбинируя длину и ширину рядов.Также нам потребуются:
- Паяльник электрический 40 Вт.
- Припой, канифоль.
- Монтажный провод.
- Силиконовый герметик.
- Двусторонний скотч.
Этапы изготовления
Для монтажа панели необходимо подготовить ровное рабочее место достаточной площади с удобным подходом со всех сторон. Сами пластины элементов лучше разместить отдельно в стороне, где они будут защищены от случайных ударов и падений. Брать их следует аккуратно, по одной.
Устройства защитного выключения повышают безопасность домашней электросети, снижая вероятность поражения электричеством и возникновения пожаров. Детальное ознакомление с характерными особенностями разных видов выключателей дифференциального тока подскажет, какой выбрать УЗО для квартиры и дома.При эксплуатации электросчетчика возникают ситуации, когда его надо заменить и заново подключить — об этом можно прочитать тут.
Обычно для изготовления панели используют способ приклеивания предварительно распаянных в единую цепь пластин элементов на плоскую основу‑подложку. Мы предлагаем другой вариант:
- Вставляем в раму, хорошо закрепляем и герметизируем по краям стекло или кусок плексигласа.
- Раскладываем на нем в соответствующем порядке, приклеивая их двусторонним скотчем, пластины элементов: рабочей стороной к стеклу, выводами для пайки — к задней стороне рамы.
- Положив раму на стол стеклом вниз, мы сможем удобно распаивать выводы элементов. Выполняем электрический монтаж в соответствии с выбранной принципиальной схемой включения.
- Склеиваем окончательно пластины с задней стороны скотчем.
- Подкладываем какую‑либо демпфирующую прокладку: листовую резину, картон, ДВП и т. п.
- Вставляем в раму заднюю стенку и герметизируем её.
При желании вместо задней стенки можно залить раму сзади каким‑нибудь компаундом, например, эпоксидкой. Правда, это уже исключит возможность разборки и ремонта панели.
Схема подключения электроснабжения дома с использованием наших батарей
Конечно, одной батареи в 50 Вт не хватит для обеспечения энергией даже небольшого домика. Но с её помощью уже можно реализовать в нем освещение, используя современные светодиодные светильники.
Для комфортного существования городского жителя сейчас в сутки требуется не менее 4 кВтч электроэнергии. Для семьи — соответственно количеству её членов.
Следовательно, солнечная батарея частного дома для семьи из трёх человек должна обеспечивать 12 кВтч. Если предполагается электроснабжение жилища только от солнечной энергии нам нужна будет солнечная батарея площадью, не менее 12 кВтч / 0,6 кВтч/м2 = 20 м2.
Эту энергию необходимо запасти в аккумуляторных батареях, ёмкостью 12 кВтч / 12 В = 1000 Ач, или примерно 16 батарей по 60 Ач.
Для нормальной работы аккумуляторной батареи с солнечной панелью и её защиты потребуется контроллер заряда.
Чтобы преобразовать 12 В постоянного тока в 220 В переменного, нужен будет инвертор. Хотя сейчас на рынке уже в достаточном количестве представлено электрооборудование на напряжения 12 или 24 В.
Совет: В низковольтных сетях электроснабжения действуют токи значительно более высоких значений, поэтому для выполнения проводки к мощному оборудованию следует выбирать провод соответствующего сечения. Проводка для сетей с инвертором выполняется по обычной схеме 220 В.Делаем выводы
При условии аккумулирования и рационального использования энергии, уже сегодня нетрадиционные виды электроэнергетики начинают создавать солидную прибавку в общем объёме её выработки. Можно даже утверждать, что они постепенно становятся традиционными.
Учитывая значительно снизившийся в последнее время уровень энергопотребления современной бытовой техники, применение энергосберегающих осветительных приборов и значительно увеличившийся КПД солнечных батарей новых технологий, можно сказать, что уже сейчас они способны обеспечивать электроэнергией небольшой частный дом в южных странах с большим количество солнечных дней в году.
В России же они вполне могут применяться, как резервные или дополнительные источники энергии в комбинированных системах электроснабжения, а если эффективность их удастся повысить хотя бы до 70%, то вполне реально будет и их использование в качестве основных поставщиков электроэнергии.
Видео о том, как изготовить прибор для сбора солнечной энергии самому
elektrik24.net
Солнечные батареи: принцип работы, как сделать своими руками в домашних условиях
Использование солнечной энергии для обеспечения жизненных потребностей в 21 веке является актуальным вопросом не только для корпораций, но и для населения. Теперь использование солнечных батарей для получения экологической электроэнергии привлекает много людей своей доступностью, автономностью, неиссякаемостью и минимальными вложениями. Теперь эти явления настолько привычны и обыденны, что уже давно прочно обосновались в нашу каждодневную жизнь.
Данный источник электроэнергии используется для освещения, функционирования бытовых электроприборов и отопления. Уличные фонари на солнечных батареях используются повсеместно в городской черте, на дачных участках и территориях загородных коттеджей.
Содержание
Принцип работы солнечной батареи
Устройство предназначено для непосредственного преобразования лучей солнца в электричество. Этот действие называется фотоэлектрическим эффектом. Полупроводники (кремневые пластины), которые используются для изготовления элементов, обладают положительными и отрицательными заряженными электронами и состоят их двух слоев n-слой (-) и р-слой (+). Излишние электроны под воздействием солнечного света выбиваются из слоев и занимают пустые места в другом слое. Это заставляет свободные электроны постоянно двигаться, переходя из одной пластины в другую вырабатывая электричество, которое накапливается в аккумуляторе.Как работает солнечная батарея, во многом зависит от ее устройства. Первоначально фотоэлементы изготавливались из кремния. Они и сейчас очень популярны, но поскольку процесс очистки кремния достаточно трудоемок и затратен, разрабатываются модели с альтернативными фотоэлементами из соединений кадмия, меди, галлия и индия, но они менее производительны.
КПД солнечных батарей с развитием технологий вырос. На сегодняшний день это показатель возрос от одного процента, который регистрировался в начале столетия, до более двадцати процентов. Это позволяет в наши дни использовать панели не только для обеспечения бытовых нужд, но и производственных.
Технические характеристики
Устройство солнечной батареи довольно простое, и состоит из нескольких компонентов:
- Непосредственно фотоэлементы / солнечная панель;
- Инвертор, преобразовывающий постоянный ток в переменный;
- Контроллер уровня заряда аккумулятора.
Аккумуляторы для солнечных батарей купить следует с учетом необходимых функций. Они накапливают и отдают электроэнергию. Запасание и расход происходит в течение всего дня, а ночью накопленный заряд только расходуется. Таким образом, происходит постоянное и непрерывное снабжение энергией.
Чрезмерная зарядка и разрядка батареи укорачивает ее эксплуатационный срок. Контроллер заряда солнечной батареи автоматически приостанавливают накопление энергии в аккумуляторе, когда он достиг максимальных параметров, и отключают нагрузку устройства при сильной разрядке.
(Tesla Powerwall — аккумулятор для солнечных панелей на 7 КВт — и домашняя зарядка для электромобилей)
Сетевой инвертор для солнечных батарей является самым важным элементом конструкции. Он преобразовывает полученную от солнечных лучей энергию в переменный ток различной мощности. Являясь синхронным преобразователем, он совмещает выходное напряжение электрического тока по частоте и фазе со стационарной сетью.
Фотоэлементы могут соединяться как последовательно, так и параллельно. Последний вариант увеличивает параметры мощности, напряжения и тока и позволяет устройству работать, даже если один элемент потеряет функциональность. Комбинированные модели изготовлены с использованием обеих схем. Эксплуатационный срок пластин около 25 лет.
Установка солнечных батарей
Если конструкции будут использоваться для электрообеспечения жилых пространств, то место установки следует выбирать тщательно. Если панели будут загорожены высотными зданиями или деревьями, то трудно будет получить необходимую энергию. Их необходимо разместить там, где поток солнечных лучей максимален, то есть на южную сторону. Конструкцию лучше установить под наклоном, угол которого равен географической широте месторасположения системы.
Солнечные панели должны размещаться таким образом, чтобы хозяин имел возможность периодически очищать поверхность от пыли и грязи или снега, поскольку это приводит к более низкой способности выработки энергии.
Солнечная батарея своими руками
Те, кто хочет сэкономить, задумываются, как сделать солнечную батарею в домашних условиях самостоятельно, чтобы она обладала необходимыми эксплуатационными параметрами и полностью обеспечивала энергетические потребност. Это особенно актуально для мест отдаленных от главных артерий цивилизации.
Солнечные батареи своими руками в домашних условиях изготавливаются из соответствующих элементов, которые можно купить в открытом доступе в специализированных компаниях или через интернет магазины. Если кремниевые пластины должны приобретаться у производителей, то остальные элементы, такие как лента, рамка, пленка, стекло, припой и прочее можно вполне обнаружить и дома в хозяйстве.
Солнечная батарея своими руками из подручных средств изготавливается некоторыми умельцами из медных листов, зажимов, мощных электроплит, соли и из других материалов. Такие кустарные устройства не смогут полностью обеспечить необходимой электроэнергией и могут использоваться лишь в небольших масштабах.
Лучше всего солнечные батареи купить у производителя, поскольку они обладают гарантией и необходимыми функциональными и эксплуатационными параметрами, и, значит, не подведут. Производство солнечных батарей базируется на применении новейших технологий, которые постоянно развиваются, предлагая более усовершенствованные модели. В зависимости от размеров устройств, они могут использовать для различных целей в местах, где нет снабжения электроэнергией. Они встречаются на калькуляторах, часах, различных мобильных устройствах.
Так, например, рюкзак с солнечной батареей будет незаменимым помощником тех, кто любит путешествовать с комфортом. Он накопит достаточно энергии, чтобы зарядить фонарик для освещения туристической палатки или чтобы во время похода заряжать необходимые гаджеты. Судя по отзывам, солнечные батареи используются часто и с удовольствием для удовлетворения разнообразных нужд не только на природе, но и в быту.
Современные устройства со встроенными солнечными модулями
- Power bank с солнечной батареей – внешний накопитель с фотоэлементами для преобразования солнечных лучей в заряд аккумулятора. Он обладает несколькими портами и предназначен для зарядки смартфонов или планшетов. Это незаменимое устройство для тех кто, много времени тратят в дороге и пользуются гаджетами. Устройство, зависимо от модели может дополняться различными функциями, как, к примеру, фонариком.
- Робот конструктор – наборы с различными элементами, из которых можно собрать несколько конструкций, которые двигаются автономно. Это лучшая игрушка для любознательных детей. Робот конструктор на солнечной батарее купить интересно будет не только малышам, но и вполне взрослым дяденькам, поскольку захватывающим является не только движение робота, но и сам процесс сборки.
- Уличные садовые светильники на солнечных батареях – идеальное решение для сада, огорода или приусадебного участка. Благодаря накопленному заряду они будут светиться всю ночь. Для этого не нужно прокладывать специальную проводку. Их можно брать с собой на рыбалку или семейный поход. Чрезвычайная мобильность, компактность и удобство делают фонари самыми востребованными изделиями на солнечных батареях.
Возможности эксплуатации настолько разнообразны, а технологии так быстро развивается, что скоро солнечные модули охватят все сферы жизни современного человека.
mbhn.ru
Солнечная батарея для дома своими руками способы реализации
Сегодня альтернативные источники энергии обладают неоспоримыми преимуществами, поскольку являются одновременно выгодным и рациональным решением: позволяют сохранить окружающую среду и повысить уровень рентабельности использования энергоресурсов. Оптимальный вариант «добычи» экологически чистой энергии — применение солнечных батарей. Из фотоэлементов можно создавать портативные устройства и стационарные гелиоустановки для частного коттеджа.
Впрочем, у данного метода имеются как сторонники, так и ярые противники.
Пока одни придумывают собственные конструкции гелиосистем, другие считают, что получение энергоресурсов из альтернативных источников — хлопотный процесс, который требует вложений.
Давайте рассмотрим все плюсы и минусы, чтобы понять, обоснованно ли использование солнечных батарей в быту.
Как это работает на практике?
Интеграция энергосистемы дома с альтернативными источниками питания особенно актуальна для жителей районов, где регулярно происходят перебои с подачей электричества. Солнечные модули — простая конструкция, которая состоит из полупроводниковых и фотоэлектрических элементов. Устройство преобразует инфракрасное излучение и видимый свет солнца в полезную электрическую энергию, за которую вам не придется платить.
Эта технология получила широкое распространение, но высокая стоимость комплекта оборудования, куда входят солнечные панели, контроллеры заряда, инверторы и аккумулирующие устройства, делает ее недоступной для простых людей. По этой причине набирает популярность производство солнечных батарей своими руками.
Самодельная солнечная батарея позволяет аккумулировать до 140 Вт энергии с каждого метра квадратного площади фотоэлементов. Положительным моментом в самостоятельном изготовлении домашних гелиосистем является возможность постепенно наращивать мощность установки, докупая новые фотоэлементы. Собирая такие конструкции, не делайте их громоздкими, которые трудно монтировать. Если ваша цель — получить гелиоустановку мощностью 5–7 кВт, то разумнее купить заводские варианты конструкций. Да, это дорого, но зато надежно и гарантия имеется.
При проектировании систем автономного электроснабжения из солнечных панелей некоторые умельцы используют схему с генератором. Сначала энергия солнца преобразуется в механическую, которая запускает вращение вала, а потом трансформируется в электрический ток. Однако для реализации этого метода на практике потребуется приличный стартовый капитал. В данной схеме применяются объемные фотопанели, которые надо постоянно поворачивать за солнцем. Для домашнего использования — не самый оптимальный вариант, но экспериментаторы вполне могут попробовать.
Плюсы и минусы гелиоустановок
Солнечные системы электроснабжения — практичный способ получения альтернативной энергии, при этом финансовые затраты на оборудование и материалы окупаются через 1–2 года эксплуатации, а в дальнейшем вы сможете экономить на покупке традиционных энергоресурсов. Хорошая перспектива на будущее.
Преимущества самодельных солнечных экосистем:
- при правильном использовании продолжительность эксплуатации составляет 25–30 лет;
- для создания фотоэлектрических пластин используются легкие материалы, что считается важным достоинством для домов, у которых фундамент не рассчитан на большие нагрузки;
- чтобы сконструировать солнечную батарею в домашних условиях, вам не потребуются специальные знания и навыки;
- фотоэлектрические панели редко выходят из строя, чаще всего это происходит из-за механических повреждений, но неисправные элементы легко заменить;
- гелиосистемы не представляют угрозы для окружающей среды, и работают бесшумно, в отличие от ветрогенераторов.
Наравне с очевидными достоинствами, самодельная солнечная панель имеет также некоторые недостатки. Во-первых, придется регулярно очищать поверхность батареи от грязи, из-за которой снижается чувствительность и светопропускная способность фотоэлементов. Во-вторых, для монтажа оборудования потребуется много свободной площади, но главное — гелиосистемы зависимы от погодных условий и времени суток. Стабильно генерировать солнечную энергию возможно лишь днем и в хорошую погоду. В других ситуациях показатели мощности снижаются в 7–10 раз, а КПД падает до 8–10%. Обязательно учитывайте эти нюансы.
Требования к монтажу
Сделать солнечные батареи не составит труда. Но важно не только правильно сконструировать устройство, но и грамотно его установить. Соблюдение правил производства и монтажа позволит получить максимум выгоды от такой конструкции. К бытовым экосистемам предъявляют 4 основных требования:
- пластины хрупкие, поэтому сначала лучше подготовить каркас, а потом только монтировать фотоэлементы;
- боковые бортики корпуса не должны создавать препятствий прямому попаданию лучей солнца на фотоэлектрические элементы, поэтому их высота должна быть минимальной;
- наружную и внутреннюю поверхность корпуса надо обработать влагостойкой краской для надежной защиты от атмосферных воздействий;
- в нижней части конструкции обязательно должны быть предусмотрены технологические отверстия для вентиляции, чтобы, выводить газ, который образуется при нагревании панелей.
Основные виды материалов
Допускается использовать заводские пластины с фотоэлементами, которые продаются в интернет-магазине и на рынке электроники, или можно смастерить установку из подручных материалов. Используя для подложки обычную фольгу, вы улучшите отражающую способность фотоэлементов и исключите вероятность перегрева батареи.
Применение фольгированных материалов положительно сказывается на сроке службы фотопанелей. Чтобы самостоятельно смастерить солнечную батарею для дома, можно использовать для этого старые радиодетали — диоды или транзисторы.
Диодная конструкция
Для бытовых гелиосистем допускается использовать специальные фотодиоды или обычные диоды без металлического корпуса. Попадающий на p-n-переход солнечный свет заставляет электроны двигаться, и происходит генерация электрического тока. Но учитывайте тот факт, что напряжение в диодах очень маленькое, — чтобы получить мощную батарею для бытовых нужд, потребуется использовать большое количество электронных элементов. Но разумно ли это?
В теории на солнечных батареях диодного типа напряжение возрастает пропорционально числу используемых в системе фотодиодов, вот только на практике получается совсем другая картина. С добавлением большого количества электронных элементов одновременно увеличивается и площадь, которая необходима для их размещения, что неизбежно приводит к потерям мощности.
При этом некоторые фотодиоды всегда будут потреблять часть вырабатываемого тока. Устранить этот недостаток пока не представляется возможным. Но главная проблема — выработка электроэнергии происходит только под воздействием прямых лучей солнца. Если небо затянуто облаками, то на выходе вы получите нулевое напряжение.
Транзисторная схема
Это один из способов, как самому сделать солнечную батарею портативного типа. Почему из транзисторов не получится сделать полноценную гелиосистему? Все просто — из-за разницы в площадях транзисторов и полупроводников КПД будет невысоким, поэтому такой вариант сгодится только для экспериментальных опытов и развлечений. От устройства вы сможете запитать электронные часы, мобильный телефон или радиоприёмник. Чтобы зарядить смартфон, достаточно использовать 4–8 транзисторов КТ801Б.
Выбор покупных фотоэлементов
Чтобы сделать солнечную батарею своими руками, многие рекомендуют использовать готовые фотоэлектрические пластины. Это удобно, но дороже. Различают три типа преобразователей:
— Монокристаллические — КПД держится на уровне 10–15%, но фотоэлементы зависимы от количества падающего солнечного света, средний срок эксплуатации составляет 20–25 лет.
— Поликристаллические — КПД 7–9%, но фотоэлектрические элементы способны генерировать электричество даже в пасмурную погоду, срок службы составляет 20 лет.
— Аморфные — КПД на уровне 10%, эффективно работают в любую погоду, смущает только высокая цена.
Для экспериментальных установок вовсе не обязательно приобретать заводские преобразователи м конвейера. Для этого вполне подойдут фотоэлектрические пластины класса «В» — второсортные элементы с незначительными дефектами. Даже в случае их выхода из строя и замены себестоимость бытовых гелиосистем будет в 2–3 раза, благодаря чему получится немного сэкономить.
Подведение итогов
Обеспечить частный дом дешевой электроэнергией вполне реально, и для этого не нужно изобретать велосипед — существует много проверенных способов, как сделать солнечную батарею самостоятельно. Да, у них КПД не самый высокий, но зато имеются другие преимущества, которые с лихвой перекрывают этот недостаток. Важно только принимать во внимание особенности климата конкретного района проживания. Как показывает практика, КПД гелиосистем выше в степях, где преобладает хорошая погода, тогда как в горных районах с высоким уровнем осадков интенсивность светового излучения меньше.
Изготовление солнечных батарей в домашних условиях дает возможность оптимизировать потребление электрической энергии — можно создать полностью автономную систему или же совместно использовать традиционные и альтернативные источники электроэнергии. Тут все зависит от потребностей и размеров бюджета.
earthgenerator.ru
О чем умалчивают производители солнечных батарей
«Зеленая» энергетика последние годы развивается достаточно стремительно. В Китае в прошлом году построили крупнейшую в мире солнечную электростанцию (в 5 раз больше площади Манхеттена). Так же хорошо растет солнечная энергетика и в России.
Но рассчитывая, что наше будущее будет состоять сплошь из солнечных электростанций нужно не забывать следующее…
Производство солнечных панелей является энергоемким процессом. В настоящее время большая часть энергии, используемой для создания солнечных панелей, связана с переработкой ископаемого сырья, поэтому даже производство этих экологически полезных продуктов может способствовать загрязнению и глобальному потеплению.Приблизительно 600 кВтч энергии используется для производства каждого квадратного метра солнечных батарей, чего достаточно для освещения 1000 лампочек мощностью 60 Вт в течение десяти часов. Средняя энергосистема использует около двух или трех панелей, каждая из которых имеет площадь около 2 м2. При установке в выгодном месте солнечная панель может производить до 200 кВтч на квадратный метр электроэнергии в год.
Поэтому энергия, используемая в процессе производства панели, компенсируется только через несколько лет эксплуатации.
Исходным материалом для изготовления солнечных батарей служит трихлорсилан, ядовитый и взрывоопасный продукт. При его перегонке и восстановлении при помощи водорода, получают чистый кремний. Побочным продуктом, на этом этапе производства, является соляная кислота. Далее, кремний плавят и получают слитки, из которых делают элементы солнечных батарей. Для производства солнечных панелей требуется использование многих опасных химических веществ. Яды, такие как мышьяк, хром и ртуть, также являются побочными продуктами производственного процесса. Эти химические вещества могут нанести серьезный ущерб окружающей среде, если их правильно не утилизировать.
При соблюдении технологий улавливания и очистки токсичных газов и жидкостей, производство не будет вредным, но часто, особенно в развивающихся странах, такое оборудование не устанавливается на предприятиях, что приводит к загрязнению окружающей среды. Энергия, используемая в производстве солнечных панелей, не является единственной энергетической затратой. Необходимо также учитывать энергию, используемую для их транспортировки, особенно если панели импортируются из другой части мира. Утилизация солнечных батарей — большая проблема. Многие из материалов, используемых для их изготовления, трудно перерабатывать, а сам процесс рециркуляции требует большого количества энергии.
Недостатки использования солнечной энергии:
1.- Неравномерное распределение энергии Солнца по поверхности планеты. Одни области более солнечные, чем другие;
2. — В пасмурные дни и ночью солнечная энергия недоступна;
3. — Необходимость использования больших площадей под солнечные источники энергии;
4. — Содержание токсичных веществ в фотоэлементах;
5. — Низкий КПД солнечных батарей, среднее значение эффективности не превышает 20%;
6. — Высокая стоимость солнечных фотоэлементов;
7. — Поверхность солнечных панелей и зеркал (для термовоздушных ЭС) нужно очищать от попадающих загрязнений;
8. — При нагреве солнечных элементов, значительно падает эффективность их работы;
9. — Сложная утилизация солнечных панелей.
Так можно ли считать солнечную энергетику не добавочной, а перспективной в глобальных масштабах?
Вот вам еще Крупнейшая термальная солнечная электростанция, а вот Крупнейшая плавучая солнечная электростанция
masterok.livejournal.com