Как заработать

Что такое 2пи – Чему равно 2Пи?

14.01.2017

2 Пи или не 2 Пи — вот в чём вопрос / Wolfram Research corporate blog / Habr


Перевод поста Giorgia Fortuna «2 Pi or Not 2 Pi?».

Выражаю огромную благодарность Кириллу Гузенко за помощь в переводе.


Три месяца назад мир (или по крайней мере мир гиков) праздновал день Пи (03.14.15…). Сегодня (6/28 — 28 июня 2015 г.) другой математический день — день 2π, или день Тау (2π = 6.28319…).

Некоторые говорят, что день тау действительно является днём для празднования, и что τ (= 2π), а не π, должен быть самой важной константой. Все началось в 2001 году со вступительного слова знаменитого эссе Боба Пале, математика из университета Юты:

“Я знаю, что некоторые сочтут это богохульством, но я считаю, что π — это ошибка”.

Это вызвало в некоторых кругах празднование дня тау — или, как многие говорят, единственного дня, в который можно съесть два пи(рога) (2pies≈2π — игра слов в англ. языке).

Однако правда ли то, что τ — константа получше? В современном мире это довольно просто проверить, а Wolfram Language делает эту задачу ещё проще (действительно, недавний пост в блоге Майкла Тротта о датах в числе пи, вдохновлённый постом Стивена Вольфрама о праздновании векового дня числа пи, весьма активно задействовал Wolfram Language). Я начала с рассмотрения 320000 препринтов на arXiv.org чтобы посмотреть, сколько в действительности формул содержат 2π по сравнению с теми, что содержат просто π или π с другими сомножителями.

Вот облако из некоторых формул, построенное с помощью функции WordCloud, содержащих 2π:


Я обнаружила, что лишь 18% рассматриваемых формул содержат 2π, из чего следует, что перейти на использование τ — не лучший выбор.

Но почему тогда сторонники использования τ считают, что мы должны перейти к использованию этого нового символа? Одна из причин заключается в том, что использование τ должно сделать тригонометрию проще для изучения и понимания. В конце концов, в тригонометрии мы используем не углы, а радианы, а в окружности содержится 2π радиан. Это означает, что четверти круга соответствует 1/2π радиан, или π/2, а не четверть чего-то! От этой несправедливости можно избавиться введением символа τ, и тогда каждой части окружности будет соответствовать такая же часть от τ. Например, четверти окружности соответствовал бы угол τ/4.

Лично у меня использование числа π не вызывает каких-то сильных негативных чувств, и честно говоря, я не думаю, что использование τ позволило бы студентам быстрее изучать тригонометрию. Давайте вспомним о двух самых важных тригонометрических функциях — синусе и косинусе. Пожалуй, самые важные в изучении тригонометрии формулы — sin= cos(2π) = 1, и sin() = cos(π) = –1. Я не только всегда предпочитала использовать косинус потому, что его значения легче запомнить (нет никаких дробных значений в π и 2π), но я и также всегда помнила, что синус и косинус отличаются тем, что одна функция принимает ненулевые значения в точках, кратных π, а другая принимает ненулевые значения в дробных частях π. Если использовать τ, то мы потеряем эту симметрию, и у нас будут уравнения sin = cos(τ) = 1 и sin = cos = –1.

Учитывая вышесказанное, получается, что использование τ или π есть вопрос личного предпочтения. Это справедливое заключение, однако нам нужен более строгий подход для определения того, какая из констант более полезна.

Даже тот подход, которым я руководствовалась вначале, может привести к неправильным выводам. В Тау манифесте Майкл Хартл приводит некоторые примеры тех мест, где часто можно встретить 2π:

И в самом деле, все эти формулы выглядели бы проще, если бы мы использовали τ. Однако это всего лишь шесть формул из того огромного количества, которые ученые регулярно используют, и как я упоминала ранее, не так уж много математических выражений содержат 2π. Тем не менее, вполне возможно, что формулы, не содержащие 2π, будут более простыми, если будут записаны через τ. Например, выражение 4π² запишется просто как τ².

Поэтому я вернулась к научным статьям, чтобы выяснить, сделает ли использование τ вместо 2π (и τ/2 вместо π) формулы более простыми. Например, вот те, которые станут более простыми с использованием τ:

А вот некоторые из тех, которые не станут:

Позвольте объяснить, что я подразумеваю под более простой формой записи на примере: если я возьму часть, содержащую π в нижней левой формуле таблицы с формулами Тау манифеста (см. выше):

Я могу заменить π на τ/2 с помощью функции ReplaceAll и получить:

Посмотрев на эти два выражения, можно увидеть, что второе проще. И дело здесь не в интуиции — во втором просто меньше символов. Для большей ясности можно рассмотреть соответствующие им древовидные графы посредством функции TreeForm:

Для получения численного представления их различия мы можем использовать количества ветвей дерева, которые соответствуют числу символов в исходных формулах:

Чтобы определить, упрощается ли формула в результате использования τ, я вычислила сложность каждой формулы (которая определяется количеством ветвей дерева), содержащей π, для формул из статей, в зависимости от того, какая из констант используется — π или τ. Для большей точности я сначала удалила все выражения, которые были равны или эквивалентны π или 2π. Я чувствовала, что будет несправедливо их учитывать, потому что они часто встречаются сами по себе, вне формул. Затем я сравнила случаи, когда использование τ упрощало формулу с теми, когда усложняло, и лишь 43% формул стали проще с использованием τ, то есть в более чем половине случаев использование τ усложняет формулу. Иными словами, из этого сравнения следует, что мы должны продолжать использовать π. Тем не менее, это не конец истории.

Я заметила вот что: если выражение становится более или менее сложным, то это значит, что количество ветвей у него менее 40. В самом деле, если посмотреть на процент формул, которые становятся проще при использовании π или τ и имеют количество ветвей меньше определённого значения, то вы увидите следующую картину:

Ось х представляет верхнюю границу количества ветвей. Из этого следует, что почти для всех формул их сложность зависит от выбора символа только в случае, если число ветвей меньше 50.

Более важное наблюдение заключается в том, что по мере роста сложности формулы ситуация резко меняется. Даже если выбрать формулы со сложностью большей, чем 3, как рассмотренная ранее формула , то тогда лишь 48% формул станут проще с использованием π против 52% для τ. Приведенные ниже графики показывают, как процентные отношения формул, которые проще с использованием π или τ, изменяются в зависимости от сложности:

Как можно заметить, при числе ветвей более 48 графики начинают вести себя хаотично. Это следствие того, что лишь 0,4% формул выборки имеют сложность более 50. Мы ничего особо конкретного не можем сказать о них, и прошлый опыт говорит нам о том, что это нам очень-то и не нужно.

И из этого графика также следует то, что в повседневной жизни и для каких-то выражений, которые сложнее чего-то наподобие , в целях упрощения выражений нам однозначно следует использовать τ. Но есть еще один момент, которого я не коснулась. Что насчёт различных областей приложений?

Возможно, в физике формулы будут проще выглядеть с τ, а в других областях — нет. Изначально я включила в поиск статьи из различных областей; однако, я не проверяла принадлежность формул, содержащих π, тем или иным областям знаний, а также то, принадлежат ли формулы, которые становятся проще с использованием τ, какому-то ограниченному подмножеству областей. В самом деле, если рассмотреть лишь математические статьи, то результат окажется следующим:

Получается, что лишь 23% всех формул становятся проще с использованием τ, да и то лишь для довольно сложных выражений. Вот что-то наподобие этого:

можно проще записать через τ, однако большинство подобных выражений встречается весьма редко. Получается, что либо учёные из различных областей должны использовать различные соглашения в зависимости от специфичных для своих областей формул, либо все должны перейти на использование τ, хотя на самом деле для некоторых областей это не имеет особого смысла. В конце концов, демократия предполагает удовлетворённость большинства, и невозможно угодить всем без исключения.

Тем не менее, вышеуказанная формула содержит ещё кое-что, на чём я бы хотела заострить внимание. Так она выглядит с τ:

Пускай выражение действительно проще записывается через τ, однако подобное улучшение столь незначительно, что становится пренебрежимо малым. Рассмотрим, например, эти два выражения вместе с количествами их ветвей:

И соответствующие им выражения в τ:

Первая формула проще в τ, но количество ветвей становится лишь на 1/13 меньше по сравнению с первоначальным количеством, в то время как второе выражение проще записывается в π, а после замены его сложность возрастает на 1/6. Другими словами, улучшение в первом случае составило 1/13, а во втором -1/6 (знак минус означает ухудшение). Среднее значение вектора составляет -0.044 — отрицательное число, что означает, что использование τ в этих двух выражениях делает общий вектор на 0,044 хуже.

Подобный векторный подход отличается от ранее использованного подхода, при котором не учитывался размер уравнения. В нём считается количество улучшений, а не количество упрощенных выражений, и это переворачивает с ног на голову предыдущие выводы. Я получила эти векторы для формул, в которых сложность ограничена снизу — всё так же, как и в предыдущем примере. Получается, что общее улучшение при замене π на τ уменьшается с увеличением сложности:

а наименьшее ухудшение -0,04 достигается при сложности 5. Как можно заметить, общее улучшение всегда отрицательно; это означает, что пусть и большее количество формул имеют более короткую запись через τ (в зависимости от области), но в целом сумма всех «упрощений» формул перевешивается всеми «усложнениями».

В итоге всего этого исследования у меня сформировалась такая позиция: думаю, нам стоит быть довольными нашим старым другом π и не переходить на использование τ.

У меня есть два заключительных замечания. Первое заключается в том, что если бы мы жили в мире, где активнее используется τ, то вывод был бы полностью противоположным. Если бы наши выражения уже записывались бы через τ, и мы исследовали бы вопрос о переходе на использование π и вопросы упрощения, то наш график сумм векторов выглядел бы следующим образом:

Подобное различие объясняется тем, что векторы, которые используются для построения графиков, зависят от исходных сложностей, и потому меняются при изменении оных.

Из этого следует, что для большинства формул, которые имеют сложность больше двух и меньше 18, улучшение от замены τ на π будет отрицательным. К сожалению для сторонников τ, мы живем всё таки в мире π.

Второе замечание, на которое навёл меня Майкл Тротт, заключается в том, что 2/3 из формул, указанных в Тау манифесте (зеленая таблица в начале поста), содержат не просто 2π, а комплексное выражение 2πi. Это говорит о том, что, возможно, сама постановка вопроса, на который я пыталась ответить, является некорректной. Быть может, лучшей будет следующая формулировка: будет ли смысл ввести новый символ τ для комплексного числа 2πi?

Это новое обозначение потребует также замены πi на τ/2, но это не повлияет на сложность πi. В общем, формулы, содержащие πi, либо уменьшат, либо сохранят свою сложность. Вот облако формул, которые станут проще:

Так они станут выглядеть после подстановки 2πi на τ:

Можно было бы возразить, что процент улучшения формул не будет достаточно высоким, и переход от 2πi к τ неоправданным. Однако факты говорят обратное: из всех формул, содержащих πi, 75% станут проще, а остальные 25% сохранят свой уровень сложности — то есть ни одна формула не станет сложнее. Это весомый аргумент, но я не в том положении, чтобы претворить эту идею; однако, полагаю, что равенство τ = 2πi перспективнее (и менее исторически сложно), чем τ = 2π.

Независимо от вашего мнения касательно τ, надеюсь, что вы прекрасно провели день Тау. Наслаждайтесь сегодняшним днём двух пи(рогов) — мнимых или каких бы то ни было.

habr.com

Число Пи — значение, история, кто придумал

Все окружности похожи

Если сравнить окружности отличных друг от друга размеров, то можно заметить следующее: размеры разных окружностей пропорциональны. А это значит, что при увеличении диаметра окружности в некоторое количество раз, увеличивается и длина этой окружности в такое же количество раз. Математически это записать можно так:

C1   C2  

=
 
d1   d2 (1)

где C1 и С2 – длины двух разных окружностей, а d1 и d2 – их диаметры.
Это соотношение работает при наличии коэффициента пропорциональности – уже знакомой нам константы π. Из отношения (1) можно сделать вывод: длина окружности C равна произведению диаметра этой окружности на независящий от окружности коэффициент пропорциональности π:

C = πd.

Также эту формулу можно записать в ином виде, выразив диаметр d через радиус R данной окружности:

С = 2πR.

Как раз эта формула и является проводником в мир окружностей для семиклассников.

Еще с древности люди пытались установить значение этой константы. Так, например, жители Месопотамии вычисляли площадь круга по формуле:

    C2  
S =
,
    12  

где S – площадь круга, C – длина окружности (круга).
Если в эту формулу подставить уже знакомые школьнику выражения площади круга S = πr2 и длины окружности С = 2 πR, то мы получим:

    (2πR)2
πR2 =
    12

, откуда π = 3.

В древнем Египте значение для π было точнее. В 2000-1700 годах до нашей эры писец, именуемый Ахмесом, составил папирус, в котором мы находим рецепты разрешения различных практических задач. Так, например, для нахождения площади круга он использует формулу:

      8     2
S = (
d )  
      9      

Из каких соображений он получил эту формулу? – Неизвестно. Вероятно, на основе своих наблюдений, впрочем, как это делали и другие древние философы.

По стопам Архимеда

— Какое из двух числе больше 22/7 или 3.14 ?
— Они равны.
— Почему ?
— Каждое из них равно π.
А. А. Власов. Из Экзаменационного билета.

Некоторы полагают, что дробь 22/7 и чисо π тождественно равны. Но это является заблуждением. Помимо вышеприведенного неверного ответа на экзамене (см. эпиграф) к этой группе можно также добавить одну весьма занимательную головоломку. Задание гласит: «переложите одну спичку так, чтобы равенство стало верным».

Решение будет таковым: нужно образовать «крышу» для двух вертикальных спичек слева, используя одну из вертикальных спичек в знаменателе справа. Получится визуальное изображение буквы π.

Многие знают, что приближение π = 22/7 определил древнегреческий математик Архимед. В честь этого часто такое приближение называют «Архимедовым» числом. Архимеду удалось не только установить приближенное значение для π, но также найти точность этого приближения, а именно – найти узкий числовой промежуток, которому принадлежит значение π. В одной из своих работ Архимед доказывает цепь неравенств, которая на современный лад выглядела бы так:

  10   6336       14688     1
3
<
< π <
< 3
  71     1         1     7
      2017
      4673
     
        4         2      

можно записать проще: 3,140 909 < π < 3,1 428 265…

Как видим из неравенств, Архимед нашел довольно-таки точное значение с точностью до 0,002. Самое удивительно то, что он нашел два первых знака после  запятой: 3,14… Именно такое значение чаще всего мы используем в несложных расчетах.

Практическое применение

Едут двое в поезде:
− Вот смотри, рельсы прямые, колеса круглые.
Откуда же стук?
− Как откуда? Колеса-то круглые, а площадь
круга пи эр квадрат, вот квадрат-то и стучит!

Как правило, знакомятся с этим удивительным числом в 6-7 классе, но более основательно им занимаются к концу 8-го класса. В этой части статьи мы приведем основные и самые важные формулы, которые пригодятся вам в решении геометрических задач, только для начала условимся принимать π за 3,14 для удобства подсчета.

Пожалуй, самая известная формула среди школьников, в которой используется π, это – формула длины и площади окружности. Первая – формула площади круга – записывается так:

где S – площадь окружности, R – ее радиус, D – диаметр окружности.

Длина окружности, или, как ее иногда называют, периметр окружности, вычисляют по формуле:

С = 2 πR = πd,

где C – длина окружности, R – радиус, d – диаметр окружности.

Понятно, что диаметр d равен двум радиусам R.

Из формулы длины окружности можно легко найти радиус окружности:

  C   C
R=
=
  2π   d

Обозначения для этих формул остаются те же.

Диаметр окружности можно найти по формуле:

где  D – диаметр, С – длина окружности, R – радиус окружности.

Это базовые формулы, знать которые должен каждый ученик. Также иногда приходится вычислять площадь не всей окружности, а только ее части – сектора. Поэтому представляем вам её – формулу для вычисления площади сектора окружности. Выглядит она так:

      α
S = πR2
      360˚

где S – площадь сектора, R – радиус окружности, α – центральный угол в градусах.

Такое загадочное 3,14

И правда, оно загадочно. Потому что в честь этих магических цифр устраивают праздники, снимают фильмы, проводят общественные акции, пишут стихи и многое другое.

Например, в 1998 году вышел фильм американского режиссера Даррена Аронофски под названием «Пи». Фильм получил множество наград.

Каждый год 14 марта в 1:59:26 люди, интересующиеся математикой, празднуют «День числа Пи». К празднику люди подготавливают круглый торт, усаживаются за круглый стол и обсуждают число Пи, решают задачи и головоломки, связанные с Пи.

Вниманием это удивительное число не обошли и поэты, неизвестный написал:
Надо только постараться и запомнить всё как есть – три, четырнадцать, пятнадцать, девяносто два и шесть.

Давайте развлечемся!

Вашему вниманию предлагаются интересные ребусы с числом Пи. Разгадайте слова, какие зашифрованы ниже.

1. π р

2. π L

3. π k

Ответы: 1. Пир; 2. Надпил; 3. Писк.

Число Пи — справочные материалы

Чему равно число Пи

Как запомнить число Пи

Число Пи в Excel

Число Пи на клавиатуре и в Word

Фотографии числа Пи

calculator888.ru

скажите, пожалуйста, чему равно cos(pi\2+a)

sin(a) вроде бы…

равно — синус (А)

минус синус альфа

Формул приведения не так уж много, и в принципе, их все можно запомнить, многие так и делают. Но память, иногда может подвести. Гораздо эффективнее не запоминать их, а в каждой конкретной ситуации «выводить заново». Это очень легко, попробуйте, надеюсь Вам понравится. Рисуете окружность (в тригонометрии иногда говорят тригонометрический круг) , через ее центр проводите оси координат (Х и Y). Вам нужно запомнить, что углы отсчитываются от положительного направления оси Х, причем положительные углы — против часовой стрелки, отрицательные углы — по часовой стрелке. Теперь на всех пересечениях окружности с осями координат расставим значения углов кратных 90 градусов (или Пи/2 радиан) . Начинаем с правой точки (пересечение с положительным направлением оси Х) и идем против часовой стрелки. Итак, расставляем 0, 90, 180, 270, 360 (совпало с 0), 450 (совпало с 90) и так далее до бесконечности, но в принципе достаточно пройти два круга. В радианах будет аналогично: 0, Пи/2, Пи, (3/2)*Пи, 2*Пи (совпало с 0), (5/2)*Пи (совпало с Пи/2) и т. д.
Совершенно аналогично, идя по часовой стрелке, расставляем отрицательные углы 0, -90(-Пи/2) совпадает с 270(3*Пи/2), -180 (-Пи) совпадает со 180(Пи) , -270(-3*Пи/2) совпадает с 90(Пи/2) и т. д.
Итак, мы нашли положения всех углов, кратных 90 градусам (Пи/2 радиан) .
Теперь отметим небольшой угол «а», в положительном направлении от оси Х. Из конца радиус-вектора этого угла опускаем перпендикуляры на оси координат. Получили два прямоугольных треугольника. Угол «а» нужно брать небольшой, чтобы катеты получившихся треугольников сильно отличались друг от друга, и их нельзя было перепутать (меньший с бОльшим) . Синус — всегда вертикальный катет, а косинус — горизонтальный. Теперь нужно запомнить, что синус положителен в верхней половине окружности и отрицателен в нижней половине. Косинус положителен в правой части окружности, отрицателен в левой половине. ВСЁ!!!!Хоть писать пришлось долго, читать тоже долго, но дела на полминуты.
Теперь приступаем к сути задания. Нам нужно найти cos(Пи/2+a). Угол Пи/2 у нас наверху. Добавляем к нему наш маленький угол «а», получается влево от оси Y. Опускаем перпендикуляры на оси (при некотором навыке, можно просто мысленно) . Смотрим, в какой половине окружности горизонтальный катет, и какова его длина, т. е он меньший или больший? Видим, что он находится в левой половине окружности, значит знак минус. Он меньший. Смотрим, что у нас меньший катет на исходном уголке «а», который мы отложили от положительного направления оси Х. Это синус. Итак, получаем: cos(Пи/2+а) =-sin(a).
Достаточно по такой схеме решить 2-3 примера, и Вы запомните на всю жизнь, не формулу приведения, а как ее выводить (или вычислять, как Вам будет угодно) . Не пожалейте затратить на тренировку 5 минут, и в дальнейшем с формулами приведения у Вас проблем не будет.

touch.otvet.mail.ru

Пи деленное на 2: pi n

      

      Таблица значений тригонометрических функций составлена для углов в 0, 30, 45, 60, 90, 180, 270 и 360 градусов и соответствующих им значений углов врадианах. Из тригонометрических функций в таблице приведены синус, косинус, тангенс, котангенс, секанс и косеканс. Для удобства решения школьных примеров значения тригонометрических функций в таблице записаны в виде дроби с сохранением знаков извлечения корня квадратного из чисел, что очень часто помогает сокращать сложные математические выражения. Для тангенса и котангенса значения некоторых углов не могут быть определены. Для значений тангенса и котангенса таких углов в таблице значений тригонометрических функций стоит прочерк. Принято считать, что тангенс и котангенс таких углов равняется бесконечности. На отдельной странице находятся формулы приведения тригонометрических функций.

       В таблице значений для тригонометрической функции синус приведены значения для следующих углов: sin 0, sin 30, sin 45, sin 60, sin 90, sin 180, sin 270, sin 360 в градусной мере, что соответствует sin 0 пи, sin пи/6, sin пи/4, sin пи/3, sin пи/2, sin пи, sin 3 пи/2, sin 2 пи в радианной мере углов. Школьная таблица синусов.

       Для тригонометрической функции косинус в таблице приведены значения для следующих углов: cos 0, cos 30, cos 45, cos 60, cos 90, cos 180, cos 270, cos 360 в градусной мере, что соответствует cos 0 пи, cos пи на 6, cos пи на 4, cos пи на 3, cos пи на 2, cos пи, cos 3 пи на 2, cos 2 пи в радианной мере углов. Школьная таблица косинусов.

       Тригонометрическая таблица для тригонометрической функции тангенс приводит значения для следующих углов: tg 0, tg 30, tg 45, tg 60, tg 180, tg 360 в градусной мере, что соответствует tg 0 пи, tg пи/6, tg пи/4, tg пи/3, tg пи, tg 2 пи в радианной мере углов. Следующие значения тригонометрических функций тангенса не определены tg 90, tg 270, tg пи/2, tg 3 пи/2 и считаются равными бесконечности.

       Для тригонометрической функции котангенс в тригонометрической таблице даны значения следующих углов: ctg 30, ctg 45, ctg 60, ctg 90, ctg 270 в градусной мере, что соответствует ctg пи/6, ctg пи/4, ctg пи/3, tg пи/2, tg 3 пи/2 в радианной мере углов. Следующие значения тригонометрических функций котангенса не определены ctg 0, ctg 180, ctg 360, ctg 0 пи, ctg пи, ctg 2 пи и считаются равными бесконечности.

      Значения тригонометрических функций секанс и косеканс приведены для таких же углов в градусах и радианах, что и синус, косинус, тангенс, котангенс.

      В таблице значений тригонометрических функций нестандартных углов приводятся значения синуса, косинуса, тангенса и котангенса для углов в градусах 15, 18, 22,5, 36, 54, 67,5 72 градусов и в радианах пи/12, пи/10, пи/8, пи/5, 3пи/8, 2пи/5 радиан. Значения тригонометрических функций выражены через дроби и корни квадратные для упрощения сокращения дробей в школьных примерах.

      Еще три монстра тригонометрии. Первый — это тангенс 1,5 полутора градусов или пи деленное на 120. Второй — косинус пи деленное на 240, пи/240. Самый длинный — косинус пи деленное на 17, пи/17.

      Тригонометрический круг значений функций синус и косинус наглядно представляет знаки синуса и косинуса в зависимости от величины угла. Специально для блондинок значения косинуса подчеркнуты зелененькой черточкой,чтоб меньше путаться. Так же очень наглядно представлен перевод градусов в радианы, когда радианы выражены через пи.

      Эта тригонометрическая таблица представляет значения синуса, косинуса, тангенса и котангенса для углов от 0 нуля до 90 девяносто градусов с интервалом через один градус. Для первых сорока пяти градусов названия тригонометрических функций необходимо смотреть в верхней части таблицы. В первом столбце указаны градусы, значения синусов, косинусов, тангенсов и котангенсов записаны в следующих четырех столбцах.

      Для углов от сорока пяти градусов до девяноста градусов названия тригонометрических функций записаны в нижней части таблицы. В последнем столбце указаны градусы, значения косинусов, синусов, котангенсов и тангенсов записаны в предыдущих четырех столбцах. Следует быть внимательными, поскольку в нижней части тригонометрической таблицы названия тригонометрических функций отличаются от названий в верхней части таблицы. Синусы и косинусы меняются местами, точно так же, как тангенс и котангенс. Это связано с симметричностью значений тригонометрических функций.

      Знаки тригонометрических функций представлены на рисунке выше. Синус имеет положительные значения от 0 до 180 градусов или от 0 до пи. Отрицательные значения синус имеет от 180 до 360 градусов или от пи до 2 пи. Значения косинуса положительны от 0 до 90 и от 270 до 360 градусов или от 0 до 1/2 пи и от 3/2 до 2 пи. Тангенс и котангенс имеют положительные значения от 0 до 90 градусов и от 180 до 270 градусов, что соответствует значениям от 0 до 1/2 пи и от пи до 3/2 пи. Отрицательные значения тангенс и котангенс имеют от 90 до 180 градусов и от 270 до 360 градусов или от 1/2 пи до пи и от 3/2 пи до 2 пи. При определении знаков тригонометрических функций для углов больше 360 градусов или 2 пи следует использовать свойства периодичности этих функций.

      Тригонометрические функции синус, тангенс и котангенс являются нечетными функциями. Значения этих функций для отрицательных углов будут отрицательными. Косинус является четной тригонометрической функцией — значение косинуса для отрицательного угла будет положительным. При умножении и делении тригонометрических функций необходимо соблюдать правила знаков.

Корень 2/2 это сколько пи? — Это по-разному бывает (смотрите картинку). Нужно знать, какая именно тригонометрическая функция равна корню из двух, деленному на два.

Если вам понравилась публикация и вы хотите знать больше, мне в работе над другими материалами.

      23 октября 2009 года — 9 апреля 2017 года.

© 2006 — 2017 Николай Хижняк. Все права защишены.

steptosleep.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о