Разное

Что может 3д принтер – 3d принтеры и их возможности в разных сферах жизни

30.03.2018

Содержание

Что такое 3D-принтер и как он работает, что можно напечатать на 3D-принтере

3D–принтер — это технология, которая позволяет создавать реальные объекты из цифровой модели. Всё началось в 80-х годах под названием «быстрое прототипирование», что и было целью технологии: создать прототип быстрее и дешевле. С тех пор многое изменилось, и сегодня 3D-принтеры позволяют создавать всё, что вы можете себе представить.

Оглавление:

3D-принтер позволяет создавать объекты, которые практически идентичны их виртуальным моделям. Именно поэтому сфера применения данных технологий так широка.

Что такое 3D-печать?

3D-печать — это процесс аддитивного производства, потому что, в отличие от традиционного субтрактивного производства, трехмерная печать не удаляет материал, а добавляет его, слой за слоем — то есть выстраивает или выращивает.

  1. На первом этапе печати данные из чертежа или 3D–модели считываются принтером.
  2. Далее идет последовательное наложение слоев.
  3. Эти слои, состоящие из листового материала, жидкости или порошка соединяются друг с другом, превращаясь в окончательную форму.

При производстве ограниченного количества деталей 3D-печать будет быстрее и обойдет дешевле. Мир 3D-печати не стоит на месте и поэтому на рынке появляется все больше различных технологий, конкурирующих между собой. Разница их заключается в самом процессе печати. Одни технологии создают слои путем размягчения или плавления материала, затем они обеспечивают послойное нанесение этого самого материала. Другие технологии предусматривают использование жидких материалов, обретающих в процессе твердую форму под воздействие разнообразных факторов.

Для того, чтобы что-то напечатать, сначала вам понадобится 3D-модель объекта, который вы можете создать в программе 3D-моделирования (CAD — Computer Aided Design), или использовать 3D-сканер для сканирования объекта, который вы хотите печатать. Есть также более простые варианты, такие как поиск моделей в Интернете, которые были созданы и доступны другим людям.

После того, как ваш проект готов, все, что вам нужно сделать, это импортировать его в Слайсер, программа которая адаптирует модель в коды и инструкции для 3D–принтера, большинство программ с открытым исходным кодом и распространяются бесплатно. Слайсер преобразует ваш проект в файл gcode, готовый к печати как физический объект. Просто сохраните файл на прилагаемой SD-карте и вставьте его в свой 3D–принтер и нажмите печать.

На весь процесс может уйти нескольких часов, а иногда и несколько дней. Все зависит от размера, материала и сложности модели. Некоторые 3D-принтеры используют два различных материала. Один из них является частью самой модели, другой выступает в роли подпорки, которая поддерживает части модели, нависающие в воздухе. Второй материал в дальнейшем удаляется.

Как работает 3D-принтер?

Хотя существует несколько технологий 3D-печати, большинство из них создают объект, наращивая множество последовательных тонких слоев материала. Обычно настольные 3D-принтеры используют пластиковые нити (1), которые подаются в принтер податчиком (2). Нить плавится в печатающей головке (3), которая выдавливает материал на платформу (4), создавая объект слой за слоем. Как только принтер начнет печатать, все, что вам нужно делать, это подождать — это просто.

Конечно, когда вы станете продвинутым пользователем, игра с настройками и настройкой вашего принтера может привести к еще лучшему результату.

Чтобы узнать больше о том, как работает 3D-печать, читайте: Техподдержка и Новости 3D-печати

Что можно напечатать на 3D-принтере?

Возможности 3D-принтеров безграничны, и теперь они становятся обычным инструментом в таких областях, как инженерия, промышленный дизайн, производство и архитектура. Вот некоторые типичные примеры использования:

Персонализированные (Custom) модели

Создавайте персонализированные продукты, которые полностью соответствуют вашим потребностям с точки зрения размера и формы. Сделайте что-то, что было бы невозможно с помощью любых других технологий.

Быстрое прототипирование

Трехмерная печать позволяет быстро создать модель или прототип, помогая инженерам, дизайнерам и компаниям получить обратную связь по своим проектам за короткое время.

Сложная геометрия

Модели, которые трудно даже представить, могут быть легко созданы на 3D-принтере. Эти модели хороши для обучения других по сложной геометрии интересным и полезным способом.

Снижение затрат

Стоимость деталей и прототипов конечного использования 3D-печати низкая благодаря используемым материалам и технологии. Сокращается время производства и расход материала, так как вы можете многократно печатать модели, используя только необходимый материал.

Как выбрать и купить 3D-принтер? →

3dpt.ru

всем ли нужен такой принтер / М.Видео corporate blog / Habr

Маркетологи наперебой расписывают достоинства 3D-принтеров, работающих по FDM-технологии. Однако действительно ли счастливый покупатель становится обладателем «волшебной коробочки», способной воспроизвести любую пластиковую деталь, или это все-таки инструмент DIY, как гравер или прибор для выжигания, и будет полезен не всем?
FDM или Fused deposition modeling (а также FFF или Fused Filament Fabrication) — метод аддитивного «выращивания» объектов, на основе которого построены почти все современные «бытовые» 3D-принтеры. Методика подразумевает послойное «выращивание» объекта из расплавленного пластика, подающегося в виде прутка.

Идея изначально была запатентована, но срок действия патента истек и после этого на рынок хлынули недорогие 3D-принтеры самых разных производителей — от именитых американцев до безымянных китайцев — на любой вкус и кошелек. Кто-то выбирает по бренду — однако если у вас есть познания в электронике и желание решать возникающие проблемы самостоятельно (без технической поддержки производителя), можно сэкономить, приобретя кит-комплект или вообще собрав принтер с нуля по одной из сотен опубликованных моделей.

Бочка меда


Технология FDM действительно впечатляет. Сегодня речь идет уже не просто о средстве для быстрого прототипирования для дизайнеров и архитекторов. По сути, имея трехмерную модель объекта, мы можем воспроизвести его в домашних условиях, при необходимости изменив масштаб или немного доработав его в редакторе. К примеру, можно скачать модель крепления для телефона в автомобиль и масштабировать ее под собственное устройство. Или же с нуля нарисовать любую бытовую деталь — от абажура на лампу до дверной ручки, не говоря уже о всяких мелочах вроде самодельных креплений к GoPro, элементов детских конструкторов и т.п.

Конечно, 3D-печать не может заменить конвейер с массовым производством — скорость послойного формирования деталей из пластика невысока, поэтому один «типовой» принтер может обслужить в лучшем случае только запросы своего хозяина. Но задачи обскакать существующие технологии производства и не стоит. 3D-печать правит там, где нужна максимальная кастомизация и серийное изготовление было бы категорически нерентабельным. Поэтому она очень полюбилась поклонникам DIY в самых разных сферах и т.п. По-сути 3D-принтер — это и есть инструмент DIY.

Бытовая 3D-печать сейчас испытывает взрывной рост. Технология FDM — довольно простая, а сообщество энтузиастов уже разработало несколько типовых конструкций подобных принтеров, отличающихся методами подачи прутка и кинематикой. На базе этих типовых конструкций создаются как фирменные принтеры, так и десятки, если не сотни самоделок, отдельные детали или даже полные кит-комплекты к которым можно купить на Ebay или AliExpress.

Дегтя… тоже бочка?


Казалось бы, технология обкатывается, дешевеет, при этом на нее уже существует нешуточный спрос. Не это ли залог скорого грандиозного успеха на массовом рынке (как это уже происходило с мобильными телефонами, цифровыми фотоаппаратами, а немногим ранее — и компьютерами)? Не пора ли покупать?

Как нам кажется, торопиться не стоит. Технология FDM довольно капризна, и пока ей далеко до того, чтобы стать эдаким «цифровым фотоаппаратом» или «стиральной машиной» в руках несведущего пользователя. Почти на каждом углу здесь приходится применять инженерную мысль. Справедливости ради стоит отметить, что если с инженерной мыслью у вас все в порядке, то возможности 3D-печати действительно огромны. Но лучше заранее знать, на что вы «подписываетесь».

Обработка стола и модели

Послойное нанесение чего-либо требует специальной подготовки моделей и поверхности, на которой осуществляется печать, плюс нужна будет постобработка деталей.
Принтер поставляется со стеклом или столиком из металла — не любой материал прилипнет на них без дополнительных ухищрений (и не любой потом отлипнет без нарушения геометрии модели). PLA-пластиком можно печатать на столе без подогрева, используя покрытие из синего скотча — особо прочного малярного скотча от 3M, который теперь предприимчивыми пользователями был переквалифицирован в «скотч для 3D-печати». Подавляющему же большинству термопластиков нужен как минимум подогрев стола, а иногда и дополнительные клеевые покрытия (лак, клей, пиво, сироп из ацетона и т.п. — протестированных пользователями вариантов существует масса). Поиск подходящего именно этому принтеру (и пластику) покрытия — путь экспериментов и ошибок. Придется испортить не одну модель, прежде чем найдется тот самый оптимальный вариант.

Но печатью первого слоя проблемы не ограничиваются. Нить из расплавленного пластика не может висеть в воздухе, соответственно, на сильно выступающих частях (например, деталях с обратным уклоном) необходимы поддержки, которые по окончании печати потребуется срезать, как-то обрабатывая место среза, чтобы не было острых краев. Надо отметить, что и самая обыкновенная вертикальная стенка после 3D-принтера не будет идеально гладкой (будут заметны как минимум границы слоев, а может и другие дефекты). Так что постобработка потребуется почти всем деталям, для которых важны качества поверхности.

Не все пластики хорошо поддаются постобработке. Тем, кто печатает много и разными материалами, дома придется завести целый набор растворителей, ручной инструмент и т.п. (как и тем, кто активно развлекается DIY). Кстати, при этом часть пластиков еще и токсична при печати — так что нужны закрытые корпуса, вытяжки и т.п.

Особенности расходников


Характеристики результата сильно зависят от расходных материалов

Проблемы с качеством могут определяться не только заводским браком, но и вполне «штатными» особенностями используемого материала: например, некоторые типы пластика гигроскопичны (впитывают воду из окружающей среды). Если не хранить такой пластик в плотно закрытых пакетах с силикагелем, пруток становится хрупким, может ломаться при подаче, издавать при печати странные звуки, плохо ложиться на модель и т.п.

В целом даже если качество материала на высоте (нет очевидных проблем), для печати определенным пластиком подходит не любая модель. Одни материалы хрупкие и не позволяют печатать тонкие стенки, другие — наоборот, хорошо расслаиваются в объеме.

Каждый пластик имеет свою оптимальную температуру печати. При ее превышении ухудшается детализация и появляются поверхностные дефекты. В обратной ситуации плохо спекаются слои. Точно так же существуют оптимальные толщина слоя, параметры ретракта (обратного движения нити) и прочие подобные параметры.

Многие огрехи печати можно «скомпенсировать», уменьшив скорость. Но правильно говорят, что главная проблема — не напечатать объект, а сделать это за разумное время. Поэтому для объектов больше спичечного коробка придется разбираться с оптимальными настройками для каждого пластика.

Сложностей добавляет то, что детальные настройки не подскажут «коллеги» на форуме — оптимальные параметры во многом определяются самим принтером: насколько хорошо у него откалиброван сенсор температуры; используется ли удаленная подача нити и т.п. Плюс конечные цифры могут отличаться у одного и того же пластика разных производителей, а также у катушек разных цветов от одного производителя.

«Фокусы» принтера

Капризничать умеет и сам принтер. У каждой из существующих на рынке конструкций есть свои недостатки. Где-то моторы, которые должны быть идеально синхронизированы, работают немного не так; где-то — колеблется стол во время печати на высокой скорости; где-то слишком большой вклад дает вес печатающей головки. Точно так же есть и «больные места», которые вылезут вне зависимости от того, самосборный ли это принтер, китовый или купленный в виде «черного ящика от производителя». В первых двух случаях вероятность получить глюки несколько выше, но и фирменное происхождение не избавляет устройства от «типовых» болезней.

В среднестатистическом 3D-принтере довольно много движущихся частей, а механика имеет свой ресурс работы. В одних устройствах снашиваются пластиковые шестерни, в других постепенно перекусывается фитингом тефлоновая трубка и т.п. Рано или поздно такие небольшие огрехи начинают сказываться на результате печати. Увы, но универсального FAQ, помогающего по итоговому результату выловить проблему, нет. Тут как в старых автомобилях — надо искать коллег по несчастью, штудировать форумы и надеяться, что с этой проблемой уже кто-то сталкивался. Или — как вариант — выяснить, какой из узлов виноват в проблеме, и полностью его перетрясти. Но это уже в большей степени напоминает постройку собственного принтера с нуля.

Программные ошибки


До того, как десятки метров прутка превратятся в жизнеспособный объект, модель должна пройти процедуру слайсинга — нарезки на слои с учетом технических характеристик принтера — размера сопла, толщины слоя и т.п. Слайсер может «наломать дров», если изначальная модель не замкнута (бывает так, что на простейшей модели получаются дыры — в самом прямом смысле). Для «лечения» моделей существуют онлайн сервисы и инструменты в специализированном ПО, но не всегда они справляются с поставленной задачей. При этом они и сами вполне могут «потерять» какие-то детали.

Откровенно говоря, слайсер может ошибиться, даже если модель совершенно нормальная, а виной тому — округление. Если шаг резьбы вала по какой-то оси не пропорционален толщине слоя, при слайсинге будет накапливаться погрешность округления, которая на модели проявляется в форме рифленой поверхности.

Если же говорить более глобально, основная проблема потребительской 3D-печати в существующем варианте — отсутствие обратной связи при выращивании модели: принтер просто не видит, что именно он печатает. Существуют датчики температуры, застревания нити и другие инструменты, но внешний вид модели не оценивается никак. Единственная обратная связь идет через пользователя, по-своему трактующего происходящее.

В итоге 3D-принтер сегодня — это не совсем бытовая техника. Его нельзя сравнить с обычным принтером и тем более какой-нибудь стиральной машиной. Представляете, если б для удачной стирки одежды вам необходимо было в ходе экспериментов подбирать частоту вращения барабана машины, меняя ее через прошивку? Да, для некоторых это действительно было интересно, но вряд ли для большинства.

3D-принтер ближе всего к электроинструменту. Это отличное средство создания объектов, но им надо уметь пользоваться. К сожалению, на данный момент эта мысль не совсем ясно читается в рекламе некоторых 3D-принтеров — в результате появляется вполне заметная доля разочаровавшихся покупателей, ожидавших чудес из научной фантастики, а получивших неиспользуемую подставку под барахло дома.

Будущее


На мой взгляд, в будущем у технологии 3D-печати все же есть шанс стать по-настоящему бытовой. Во-первых, FDM стремительно развивается: совершенствуются прошивки, добавляются новые датчики и т.п. Одновременно с этим в геометрической прогрессии растут объемы русскоязычной документации, вполне доступной для понимания неспециалистами.

Во-вторых, на потребительский рынок в прошлом-позапрошлом годах начали выходить принтеры, работающие по другой технологии — методу лазерного спекания (SLS), благо патентные ограничения на SLS закончились в 2014 году. Однако пока стоимость устройств превышает 5 тыс. долларов США. Так что пока, говоря о потребительской 3D-печати, мы все же подразумеваем FDM со всеми сопутствующими проблемами.

habr.com

Чем же печатают 3D-принтера?

3D печать основана на технологии послойного выращивания твёрдых объектов из различных материалов. Объёмные модели печатаются из пластика, бетона, гидрогеля, металла и даже из живых клеток и шоколада. В настоящей статье мы представим краткий обзор наиболее популярных материалов для 3D печати.

ABC-пластик

АBC-пластик известен как акрилонитрилбутадиенстирол. Это один из лучших расходных материалов для 3D печати. Такой пластик не имеет запаха, не токсичен, ударопрочен и эластичен. Температура плавления АВС-пластика составляет от 240°С до 248°С. Он поступает в розничную продажу в виде порошка или тонких пластиковых нитей, намотанных на бобины.

3D модели из АВС-пластика долговечны, но не переносят прямой солнечный свет. С помощью такого пластика можно получить только непрозрачные модели.

АВС-пластик для 3D печати

Акрил

Акрил используется в 3D печати для создания прозрачных моделей. При использовании акрила необходимо учитывать следующие особенности: для данного материала нужна более высокая температура плавления, чем для АВС-пластика, и он очень быстро остывает и твердеет. В разогретом акриле появляется множество мелких воздушных пузырьков, которые могут вызвать визуальные искажения готового изделия.

Изделия, напечатанные из акрила

Бетон

В настоящее время изготовлены пробные образцы 3D принтеров для печати бетоном. Это огромные печатающие устройства, которые кропотливо, слой за слоем, «печатают» из бетона строительные детали и конструкции. Такой 3D принтер может всего лишь за 20 часов «напечатать» жилой двухэтажный дом общей площадью 230 м2.

Для 3D печати используется усовершенствованный сорт бетона, формула которого на 95% совпадает с формулой обычного бетона.

Изделия, напечатанные бетоном

Гидрогель

Учёные из иллинойского Университета (США) напечатали при помощи 3D принтера и гидрогеля биороботов длиной 5-10 мм. На поверхность биороботов поместили клетки сердечной ткани, которые распространились по гидрогелю и начали сокращаться, приводя в движение робота. Такие роботы из гидрогеля способны передвигаться со скоростью 236 микрометров в секунду. В будущем они будут запускаться в организм человека для обнаружения и нейтрализации опухолей и токсинов, а также для транспортировки лекарственных препаратов к месту назначения.

Биороботы из гидрогеля, напечатанные 3D принтером

Бумага

В некоторых 3D принтерах в качестве материала для печати используется обычная бумага формата А4. Так как бумага – это доступный и недорогой материал, то и бумажные модели получаются недорогими и доступными для пользователей. Такие модели печатаются послойно, причём каждый последующий слой бумаги вырезается принтером и наклеивается на предыдущий. Модели из бумаги печатаются быстро, но не могут похвастаться прочностью или эстетичностью. Они идеально подойдут для быстрого прототипирования компьютерного проекта.

 

3D модели, напечатанные из бумаги

Гипс

В современной 3D печати широко применяются гипсовые материалы. Модели, изготовленные из гипса, недолговечны, но имеют очень низкую себестоимость. Такие модели идеально подходят для изготовления объектов, предназначенных для презентаций. Их можно показывать в качестве образца заказчикам и клиентам, они отлично передадут форму, структуру и размер оригинального изделия. Так как гипсовые модели отличаются высокой термостойкостью, их используют в качестве образцов для литья.

3D модель, напечатанная из гипса

Деревянное волокно

Изобретатель Кай Парти разработал специальное деревянное волокно для 3D печати. Волокно состоит из дерева и полимера и по своим свойствам похоже на полиактид (PLA). Комбинированный материал позволяет получить долговечные и твёрдые модели, которые внешне выглядят как деревянные изделия и имеют запах свежеспиленного дерева. В настоящее время инновационный материал используется только в самореплицирующихся принтерах RepRap.

 

3D модель, напечатанная деревянным волокном

Лёд

В 2006 году два канадских профессора получили грант на развитие технологии 3D печати ледяных фигур. За три  года они научились создавать при помощи 3D принтеров небольшие ледяные предметы. Печать протекает при температуре -22°С, в качестве расходных материалов используются вода и метиловый эфир, подогретый до температуры 20°С.

Фигура, напечатанная льдом

Металлический порошок

Ни один пластик не сможет заменить металл с его приятным мягким блеском и высокой прочностью. Поэтому в 3D печати очень часто используется порошок из лёгких и драгоценных металлов: меди, алюминия, их сплавов, а также золота и серебра. Однако металлические модели не обладают достаточной химической стойкостью и имеют высокую теплопроводность, поэтому в металлический порошок для печати добавляют стекловолоконные и керамические вкрапления.

Украшения из металлического порошка, напечатанные 3D принтером

Нейлон

Печать нейлоном имеет много общего с печатью АВС-пластиком. Исключениями являются более высокая температура печати (около 320°С), высокая способность впитывать воду, более продолжительный период застывания, необходимость откачки воздуха из экструдера из-за токсичности компонентов нейлона. Нейлон – это достаточно скользкий материал, для его применения следует оснастить экструдер шипами. Несмотря на перечисленные недостатки, нейлон с успехом используют в 3D печати, так как детали из данного материала получаются не такими жёсткими, как из АВС-пластика, и для них можно использовать шарниры скольжения.

Нейлоновая нить для 3D печати

Изделия из нейлона, напечатанные 3D принтером

Поликапролактон (PCL)

Поликапролактон близок по свойствам к биоразлагаемым полиэфирам. Это один из самых популярных расходных материалов для 3D печати. Он имеет низкую температуру плавления, быстро затвердевает, обеспечивает прекрасные механические свойства готовых изделий, легко разлагается в человеческом организме и безвреден для человека. Кроме того, он может применяться сразу в нескольких технологиях 3D печати: SLS, ZCorp и FDM.

Поликапролактон для 3D принтера

Поликарбонат (PC)

Поликарбонат – это твёрдый пластик, который способен сохранять свои физические свойства в условиях экстремально высоких и экстремально низких температур. Обладает высокой светонепроницаемостью, имеет высокую температуру плавления, удобен для экструзионной обработки. При этом его синтез сопряжён с рядом трудностей и экологически не безвреден. Используется для печати сверхпрочных моделей в нескольких технологиях 3D печати: SLS, LOM и FDM.

Полилактид (PLA)

Полилактид – это самый биологически совместимый и экологически чистый материал для 3D принтеров. Он изготавливается из остатков биомассы, силоса сахарной свёклы или кукурузы. Имея массу положительных свойств, полилактид имеет два существенных недостатка. Во-первых, изготовленные из него модели недолговечны и постепенно разлагаются под действием тепла и света. Во-вторых, стоимость производства полилактида очень высока, а значит и стоимость моделей будет значительно выше аналогичных моделей, изготовленных из других материалов. Используется в технологиях 3D печати: SLS и FDM.

Полилактидная нить и изделия, напечатанные полилактидом на 3D принтере

Полипропилен (PP)

Полипропилен – это самая лёгкая из всех ныне существующих пластических масс. По сравнению с полиэтиленом низкого давления хуже плавится и лучше противостоит истиранию. При этом уязвим к активному кислороду и деформируется при отрицательных температурах.

Полипропилен для 3D печати

Полифенилсульфон (PPSU)

Данный материал пришёл в 3D печать из авиапромышленности. Он практически не горит, характеризуется теплостойкостью, высокой твёрдостью. Напоминает обычное стекло, но превосходит его по прочности. Используется в технологиях 3D печати: SLS и FDM.

Полиэтилен низкого давления (HDPE)

Это самый распространённый вид пластмассы в мире, из которого изготавливают ПЭТ-бутылки, канистры, трубы, плёнки, пакеты и т.д. В 3D печати полиэтилен низкого давления является непревзойдённым лидером. Данный материал может быть использован в любой технологии 3D печати.

Полиэтиленовая обувь, напечатанная на 3D принтере

Шоколад

Британские учёные представили публике первый шоколадный 3D принтер, который печатает любые шоколадные фигурки, заказанные оператором. Принтер наносит каждый следующий слой шоколада поверх предыдущего. Благодаря способности шоколада быстро застывать и твердеть при охлаждении, процесс печати протекает довольно быстро. В ближайшем будущем такие принтеры будут востребованы в кондитерских и ресторанах.

Шоколадный принтер в работе

Прочие материалы

Существуют 3D принтеры, которые предназначены для печати глиняными смесями, известковым порошком, продуктами питания, живыми органическими клетками и многими другими удивительными материалами. О том, какие материалы для 3D печати будут использоваться в ближайшем будущем, остаётся лишь догадываться.

sitmaster.by

Что может быть напечатано на 3D-принтере?

Использование 3D-технологий позволяет создавать поистине уникальные и неповторимые вещи. Возможности аддитивных методов безграничны, поэтому любая фантазия или задумка с легкостью воплощается в реальный объект. То, что было напечатано на 3D-принтере, может по праву называться современным искусством. Мы подготовили для вас список из 9-ти самых потрясающих изделий и объектов, созданных на трехмерном принтере.

Пальмы с солнечными батареями

В ОАЭ было напечатано на 3D-принтере специальные устройства с бесплатной раздачей Wi-Fi. Сделаны эти изделия в виде пальм, которыми украсили улицы в Дубае. Кроме того, что возле них можно подключиться к сети интернет, они также оснащаются солнечными батареями. Поэтому при желании от такой «пальмы» можно подзарядить телефон или любой другой электронный прибор.

Использование 3D-принтеров позволило создать прочные устройства необычной формы. Для изготовления применили бетон и волоконно-армированный пластик. Примечательно, что подобные установки надежно защищены от воздействия ультрафиолетовых излучений и влаги. Эти уникальные пальмы выполняют еще одну важную функцию – освещают город в темное время суток.

Автомобиль, напечатанный на 3D-принтере

Современный мир настолько динамично развивается, что на смену обычным транспортным средствам пришли инновационные изделия, напечатанные на 3D-принтере. Известно много примеров подобных автомобилей. Одним из них является продукт компании Lосal Моtors. Его представили в прошлом году в Лас-Вегасе. Для его создания применялся метод DDМ. Кузов произвели из термопластичных материалов. Остальные же детали выпускали преимущественно из углеродных волокон и АВS-пластика в соотношении 20% и 80%, соответственно. В среднем такое творение автомобильной промышленности стоит около 53-х тысяч долларов.

Но это не единственная машина, напечатанная на 3d-принтере. Свеженький пример высокотехнологичного авто – суперкар Вlаde, новое творение Divergent Microfactories. По сути, это каркасная структура алюминиевых узлов и карбоновых стержней. Аддитивная технология позволила не только сэкономить материалы для изготовления машины, но и облегчила ее на целых 90%! Оборудовали этот суперкар 700-литровым двигателем, что позволяет ему разгоняться до сотни всего за 2,2 секунды.

«Зеленый велосипед»

Байки, напечатанные на 3D-принтере, фото их деталей не сложно найти в Интернете. В принципе, многие фирмы и компании выпускали свои версии 3D-печатных великов. Но сейчас хотелось бы поговорить о модели, напечатанной на 3D- принтере от Еuroсоmpositi. Назвали велосипед Вhulk.

Он считается первым в своем роде устройством, которое снабжается абсолютно экологически чистой рамой. При этом она может похвастаться высокой устойчивостью к воздействию окружающей среды. Раму напечатали из биоразлагаемого РLA-пластика. Примечательно, что для ее создания затратили намного меньше усилий, времени и энергии, чем при производстве металлической рамы.

Применение 3D-технологий в медицине

Возможности 3d-принтера в медицинской отрасли безграничны. Особых успехов удалось добиться в сфере протезирования. Одним из успешных проектов, посвященных этому, считается Аrt 4 Leg. Его суть – создание поверхностей с аутентичным дизайном. Впоследствии данные поверхности крепят к протезам мощнейшими магнитами. Что это дает? Уникальные возможности 3D-печати позволяют обладателям необычных протезов выражать свою индивидуальность.

Что можно напечатать на 3D-принтере еще? Некоммерческая организация «Орeratiоn оf Норе» продемонстрировала уникальные возможности аддитивной технологии. Ей удалось успешно восстановить поврежденную часть лица пациента. Изначально провели компьютерную томографию, после чего преобразовали полученные изображения в трехмерные данные. Затем напечатали модель челюсти на 3D-принтере так, что можно было с ее помощью полностью реконструировать лицо. Для этого врачи провели 12-ти часовую операцию.

Высокое качество 3D-принтера позволяет даже создавать отдельные человеческие органы. Пока их используют как модели для передоперационных тренировок. Но не за горами времена, когда такие органы будут трансплантировать больным, спасая тем самым их жизни.

Что можно напечатать на 3D-принтере: фото настоящего оружия

Первым 3D-печатным оружием считается револьвер Джеймса Патрика. Практически все элементы PM522 Washbear .22LR были напечатаны с помощью аддитивной техники. Еще один пример оружия – полуавтоматический пистолет Shutу МР-1. Это вполне «серьезный» агрегат для убийств, хотя и мелкокалиберный.

Венцом коллекции 3D-печатного оружия считается Rail Gun. Несмотря на то, что этот пластиковый пистолет не отличается самым мощным выстрелом, зато он выглядит очень «грозно» и устрашающе.

Стальной мост

Возможности 3D-печати активно используют и в строительной отрасли. Можно назвать немало архитектурных объектов, которые так или иначе были созданы с помощью аддитивной технологии. Поистине впечатляющим является проект, над которым работают Jоris Lааrmаn Lаb, Неijmаns и МХ3D. Компании планируют возвести в исторической части Амстердама стальной пешеходный мост.

Для строительства моста будет использоваться технология MX3D и промышленные манипуляторы с шестью степенями свободы. Данное решение позволит делать металлические конструкции прямо в воздухе. Отказ от традиционной сварки в пользу послойного наплавления металлических капель делает проект поистине уникальным.

Тапкабургер

Описание 3D-принтера и его безграничных возможностей стоит начать с того, что на нем можно делать еду. Аддитивные механизмы используют при изготовлении необычных макаронных и кондитерских изделий – этим уже никого не удивить. А вот «Shoe Burger» действительно поражает.

Этот бургер изготовляется в форме вашего кроссовка или туфли. Чтобы получить такой необычный тапкабургер, вначале необходимо отсканировать свой башмак и сделать его цифровую копию. Дальше очередь за ее печатью на трехмерном принтере. Следующий шаг – обратная форма из термостойкого пищевого силикона. Ее-то вы потом и зальете тестом перед отправкой в духовку.

Наноскульптуры

Существует не только 3D-принтер 3D Mini, но и возможность печати мини-скульптур и нанообъектов. Так, к примеру, Джонти Харвитс поражает всех своими необычными творениями. Их нельзя потрогать, нельзя даже увидеть без микроскопа. Секрет уникальных изделий состоит в особом устройстве для печати. Такое устройство избавляет от всяческих проблем со слоистостью. Правда, если вы захотите на нем напечатать модель, которую можно будет увидеть, ждать придется очень долго.

Институт «KarlsruheInstitute of Тесhnology» создал особую технологию мультифотонной литографии, благодаря которой и возможна печать подобных наноскульптур. Основан новый метод на феномене двухфотонного поглощения.

Биопечать

Другими словами, это особый Би-код, технология печати объектов с помощью пчел. Дженнифер Берри смогла контролировать пчел, тем самым добилась того, что они строят ульи по заданным формам. Биолог сделала своеобразный биопринтер, то есть искусственный улей. В нем пчелы живут под ее контролем и под ее руководством делают соты.

Технология не отличается сложностью. Вначале задается некая форма, которая должна ограничивать внешние границы создаваемой модели. Кроме этого, необходимо показать направление «роста» сот при помощи специального материала. Все это нужно поместить в прозрачный бокс. Внутри него обязательно поддерживается определенный микроклимат.

make-3d.ru

Классификация 3D принтеров (7 технологий 3D печати) / Habr

На хабре уже были статьи о технологиях печати, которые используют 3D принтеры, однако в данной статье я постарался подойти к вопросу системно, чтобы в голове у читателя сложилась четкая картина о том, какие принципы заложены в технологии 3D печати, какие материалы используются и в конечном итоге какую технологию лучше использовать для получения определенного результата, будь то деталь из титана, или мастер-модель для последующего тиражирования.
Статья основана на книге Fabricated: The New World of 3D printing

I. Те которые что-то выдавливают или выливают или распыляют

1) FDM (fused deposition modeling) принтеры которые выдавливают какой-то материал слой за слоем через сопло-дозатор, не буду расписывать подробно, мы про них все знаем. Все мэйкерботоподобные принтеры + принтеры Stratasys + различные кулинарные принтеры (используют глазурь, сыр, тесто) + медицинские которые печатают “живыми чернилами” (когда какой-либо набор живых клеток помещается в специальный медицинский гель которые используется далее в биомедицине)

2) Технология Polyjet , была изобретена израильской компанией Objet в 2000 г. в 2012 их купили Stratasys. Суть технологии: фотополимер маленькими дозами выстреливается из тонких сопел, как при струйной печати, и сразу полимеризуется на поверхности изготавливаемого девайса под воздействием УФ излучения. Важная особенность, отличающая PolyJet от стереолитографии, является возможность печати различными материалами.
Преимущества технологии: а) толщина слоя до 16 микрон (клетка крови 10 микрон) б) быстро печатает, так как жидкость можно наносить очень быстро. Недостатки технологии: а) печатает только с использованием фотополимера — узко-специализированный, дорогой пластик, как правило, чувствительный к УФ и достаточно хрупкий.
Применение: промышленное прототипирование и медицина

3) LENS (LASER ENGINEERED NET SHAPING)
Материал в форме порошка выдувается из сопла и попадает на сфокусированный луч лазера. Часть порошка пролетает мимо, а та часть, которая попадает в фокус лазера мгновенно спекается и слой за слоем формирует трехмерную деталь. Именно по такой технологии печатают стальные и титановые объекты.
Поскольку до появления этой технологии печатать можно было только объекты из пластика, к 3D печати особенно серьезно никто не относился, а эта технология, открыла двери для 3D печати в “большую” промышленность. Порошки различных материалов можно смешивать и получать таким образом сплавы, на лету.
Применение: например, титановые лопатки для турбин с внутренними каналами охлаждения. Производитель оборудования: Optomec

4) LOM (laminated object manufacturing)
Тонкие ламинированные листы материала вырезаются с помощью ножа или лазера и затем спекаются или склеиваются в трехмерный объект. Т.е. укладывается тонкий лист материала, который вырезается по контуру объекта, таким образом получается один слой, на него укладывается следующий лист и так далее. После этого все листы прессуются или спекаются.
Таким образом печатают 3D модели из бумаги, пластика или из алюминия. Для печати моделей из алюминия используется тонкая алюминиевая фольга, которая вырезается по контуру слой за слоем и затем спекается с помощью ультразвуковой вибрации.

II. Те которые что-то спекают или склеивают

1) SL (Stereolithography) Стереолитография.
Есть небольшая ванна с жидким полимером. Луч лазера проходит по поверхности, и в этом месте полимер под воздействием УФ полимеризуется. После того как один слой готов платформа с деталью опускается, жидкий полимер заполняет пустоту далее запекается следующий слой и так далее. Иногда происходит наоборот: платформа с деталью поднимается вверх, лазер соответственно расположен снизу…
После печати таким методом, требуется постобработка объекта — удаление лишнего материала и поддержки, иногда поверхность шлифуют. В зависимости от необходимых свойств конечного объекта модель запекают в т.н. ультрафиолетовых духовках.
Фотополимер зачастую бывает токсичным поэтому при работе с ним нужно пользоваться средствами защиты и респираторами. Содержать и обслуживать такой принтер дома — сложно и дорого
Преимущества: быстро и точно, точность до 10 микрон. Для спекания фотополимера достаточно лазера от Blu-ray проигрывателя, благодаря чему на рынке появляются дешевые при этом точные принтеры работающие по такой технологии (e.g. Form1).

2) LS (laser sintering)
Лазерное спекание. Похоже на SL, только вместо жидкого фотополимера используется порошок, который спекается лазером.
Преимущества: а) менее вероятно, что деталь сломается в процессе печати, так как сам порошок выступает надежной поддержкой б) материалы в порошковой форме довольно легко найти в продаже в том числе это могут быть: бронза, сталь, нейлон, титан
Недостатки: а) поверхность получается пористая б) некоторые порошки взрывоопасны, поэтому должны храниться в камерах, заполненных азотом в) спекание происходит при высоких температурах, поэтому готовые детали долго остывают, в зависимости от размера и толщины слоев, некоторые предметы могут остывать до одного дня.

3) 3DP (three dimensional printing)
Технология изобретена в 1980 году в MIT студентом Paul Williams, технология была продана в несколько коммерческих организаций, одна из которых — zCorp, в настоящее время поглощена 3D Systems.
На материал в порошковой форме наносится клей, который связывает гранулы, затем поверх склеенного слоя наносится свежий слой порошка, и так далее. На выходе, как правило, получается материал sandstone (похожий по свойствам на гипс)
Преимущества: а) так как используется клей, в него можно добавить краску и таким образом печатать цветные объекты б) технология относительна дешевая и энергоэффективная в) можно использовать в условиях дома или офиса в) можно печатать использовать порошок стекла, костный порошок, переработанную резину, бронзу и даже древесные опилки. Используя похожу технологию можно печатать съедобные объекты например из сахара или шоколадного порошка. Порошок склеивается специальным пищевым клеем, в клей может добавляться краситель и ароматизатор. Как пример, новые 3D принтеры от компании 3D systems, которые были продемонстрированы на CES 2014 — ChefJet и ChefJet Pro
Недостатки: а) на выходе получается достаточно грубая поверхность, с невысоким разрешение ~ 100 микрон б) материал нужно подвергать постобработке (запекать), чтобы придать ему необходимые свойства.

Надеюсь материал будет для вас полезен.
Дополнения принимаются.

habr.com

Как работает 3D-принтер? Просто о сложном

Наверх
  • Рейтинги
  • Обзоры
    • Смартфоны и планшеты
    • Компьютеры и ноутбуки
    • Комплектующие
    • Периферия
    • Фото и видео
    • Аксессуары
    • ТВ и аудио
    • Техника для дома
    • Программы и приложения
  • Новости
  • Советы
    • Покупка
    • Эксплуатация

ichip.ru

В чем преимущество 3Д-печати или 10 сфер ее применения

В чем преимущество 3Д-печати или 10 сфер ее применения

Современный мир наполняется все новыми разработками в сфере аддиптивной печати. Несмотря на то, что во многих странах 3D печать уже входит в повседневную жизнь, на просторах СНГ трехмерные технологии еще в диковинку. Можно сказать, что украинский 3Д принтер только начинает свою жизнь. Правда, промышленные гиганты и компании с мировым именем уже начали внедрять в нашей стране трехмерную печать в различных сферах (строительство, архитектура, медицина). Потенциал промышленных 3Д-принтеров очень высокий, но и требования ставятся к ним колоссальные.

Набирают популярности и бытовые 3Д принтеры. Они более доступны, обслуживаются легко, просты в использовании. Но пока они не являются предметом быта, их не очень часто задействуют небольшие коммерческие фирмы. Возможно, причина в том, что многие просто не знают о всех возможностях 3D printing, сферах применения. Наша статья прояснит для новичков ситуацию с применением аддиптивных технологий, мы расскажем использовании данных технологий в бытовых условиях, а также промышленных масштабах.

10 ярких примеров использования печати в формате 3D

Специалисты по аддиптивным технологиям утверждают, что наиболее перспективным направлением для трехмерной печати являются мелкосерийное, а также поштучное производство. Если изделия ширпотреба выгодней всего производить путем штамповки или отлива, то кастомизированные продукты проще напечатать. Ведь для этого нужно только создать трехмерную цифровую модель, ввести данные 3D-printer и через несколько часов можно получить продукт высокого качества.

Медицина

Нашла свое широкое применение 3D печать в медицине, особо в области протезирования. И это неудивительно, ведь создание индивидуального протеза стоит немало, около 50 тысяч долларов, а напечатанный с помощью 3Д принтера обойдется лишь 50$. Качество при этом не только не теряется, а наоборот, даже становится лучше. Печатание протезов происходит по цифровому формату, что исключает любые погрешности. В детском протезировании 3Д печать имеет большое значение, ведь протезы нужно менять часто, по мере того, как ребенок растет, к тому же она существенно удешевляет изделие.

В направлении протезирования быстрыми темпами развивается одна из ведущих российских компаний Can Touch, основателем которой является В.Румянцев, при поддержке проекта W.E.A.S. Robotics. На помощь медикам приходит сканирование. Трехмерное изображение конечности производят 3Д сканером, оцифровывают его, затем на основе индивидуальных данных выполняют протез посредством 3Д печати. Компания в своем арсенале имеет высококачественное оборудование для печатания протезов, однако изделия в дешевом варианте можно печать и на настольном 3д-принтере.

Протезирование – только одно из направлений аддиптивной печати, в будущем планируется еще развивать биопечать. Именно это направление подразумевает создание биологических структур при помощи 3Д печати живыми биоклетками, а также биоразлагемым материалом, который будет служить своеобразным каркасом для биоклеток. Теперешние возможности медицины позволяют выращивать клетки в обычной пробирке. Но, чтоб создать полноценный орган со всеми кровеносными сосудами, который можно пересадить пациенту, потребуется трехмерная биопечать.

Пока создать полноценный орган еще не удалось, однако одна из российских компаний 3D Bioprinting Solutions уже произвела имплантацию щитовидной железы подопытной мыши, напечатанную с помощью биопечати. Американская фирма Organovo уже печатает печеночную ткань, на которой производят тестирование новых лекарств, выявляя их побочные эффекты, показатели по токсичности и другие негативные моменты.

Человеческие органы печатают и с целью создания опытной модели. То есть, в случае тяжелой операции, по снимкам (томография) воспроизводят 3д-модель органа, требующего хирургического вмешательства. Хирург тренируется сначала на модели, а затем проводит операцию в живую. Такая практика позволяет правильно выполнить операцию, без проблем. Именно таким образом в г. Санк-Петербург врачи спасли жизнь маленькому ребенку, у которого был врожденный порок сердца.

Робототехника

Компания Siemens хочет внедрить в жизнь очень интересный задум. Суть его в том, чтоб 3д-печатные роботы одновременно являтлись принтерами формата 3D. Создатели говорят, что работа этих устройств подобна пчелиной семьи. То есть, группа механизмов, имея заданный общий алгоритм, будет воспроизводить новые образцы роботов с помощью бортовых трехмерных принтеров.

Пауки-роботы получают энергию от аккумуляторной батареи. Они имеют память, что позволяет устройствам запомнить свое место относительно друг друга и в пространстве. Интересно, что роботы могут меняться. Если подзарядка подсела, роботопаук вызывает на подмену идентичного робота с заряженной батареей, сам же «уходит», чтоб подзарядить батарею.


Разработчики данной идеи полагают, что такой «рой», состоящий из роботов, может выполнять крупногабаритные работы в промышленном масштабе, к примеру, строить высотные здания или возводить корабли.

Строительство

Сегодня 3Д принтеры довольно успешно применяются в строительстве, результаты выглядят впечатляюще. Печать зданий производится послойно специальной цементной смесью. Рабочий раствор для печатания имеет определенную формулу, нарушать которую нельзя. Ведь раствор должен хорошо схватываться и застывать, дабы последующий слой наносился на крепкое основание.

Также важно, чтоб слои надежно схватились между собой. Напечатанное здание имеет полые стены, оно может служить несъемным каркасом. Сначала между стенами прокладывают все нужные коммуникационные системы, затем стены утепляют или заливаются бетоном, что делает всю конструкцию монолитной, устойчивой.

Технологии 3Д печати в строительстве дают возможность быстро возводить здания, а также придавать им самые оригинальные формы. Яркий пример – работы А.Руденко, который напечатал небольшой замок, а еще эффектную гостиничную пристройку на Филиппинах. Китайцы уже возвели здание в пять этажей, напечатанное на 3Д принтере. Правда, дом собирался по частям. Вначале печатались только панели, которые монтировали на месте.

Автомобили

Быть может в будущем любой автомобиль можно будет напечатать у себя в гараже, имея, естественно, соответствующее оборудование. Сейчас же более реальная перспектива – это печатание запасных деталей к авто. Некоторые любители-печатники уже наладили изготовление запчастей из АБС-пластика. Таким образом поломанную ручку или пластиковую отделку можно изготовить при помощи трехмерной печати за сущие копейки.

Однако и это еще не все. Фирма MarkForged разработала 3D принтер, печатающий изделия при поддержке углеродных волокон. Теперь некоторые печатные детали уже красуются на болидах «Формулы-1». Другая фирма Local Motors (США) выпустила автомобиль, корпус которого создан при помощи трехмерной печати. Аддиптивными технологиями увлекаются и японцы с компании Toyota, которые также работают над своим вариантом напечатанного авто.

Космос

3D печать с успехом применяют в различных космических проектах, в том числе и в условиях орбитальных станций. Ведь печатать нужные изделия или запасные детали на борту станции гораздо проще, чем доставлять их туда же в полном объеме. Первое печатное устройство Made in Space вывели на орбиту еще в 2014г. 3Д-принтер благополучно прошел все испытания и был возвращен на Землю, а на смену ему поступило новое, более современное устройство.

Один из последних проектов фирмы Made in Space, который еще находится в разработке, разрабатывает возможность трехмерного печатания снабжающих элементов и двигателей на астероидах, с применением подручных материй. Это позволит доставлять ценный сырьевой материал на околоземную орбиту для того, чтоб применять его для строительства.


Кстати, астронавты из Италии любят по утрам баловаться кофе, который пьют из специальных чашек, изготовленных на 3Д оборудовании. Жидкость в таких чашках не проливается благодаря поверхностному натяжению. А еще не так давно российские специалисты недавно вывели на орбиту спутник, отдельные части которого были напечатаны на трехмерном принтере.

Авиастроение

Совсем недавно нам казалось, что напечатанный двигатель – это что-то из области фантастики. Однако сегодня аддиптивные технологии применяют во многих сферах деятельности, включая авиастроение. Дело в том, что есть несколько методов 3д технологий. Для построения двигателей применяют лазерное спекание, а также – наплавление. Эти методы хороши тем, что позволяют создавать высококачественные прочные изделия из сплавов или же металла.

Сырьем для такого печатания служат специальные мелкодисперсные порошкообразные смеси. Сначала их нагревают почти до температуры плавления, а потом производят спекание высокоточным лазером по заданным линиям.

Вначале печатные детали не вызывали доверия, многим казалось, что они не крепкие, при нагрузках просто развалятся. Но, как показала практика, печатные детали имеют такую же прочность, как и литые из металла в заводских условиях. К тому же трехмерная печать позволяет воспроизвести даже очень сложную конструкцию единым монолитом, тем самым избегая слабых зон, которые могут быть при сваривании разных частей изделия.

Сегодня такие компании, как Airbus и SpaceX (США), уже успешно используют летательные аппараты с двигателями, частично напечатанными на 3д-принтере. А российский научно-исследовательский институт авиации представил завихрители для двигателей ПД-14, что были произведены печатным способом. Сейчас они проходят испытания.

Промышленный дизайн

Трехмерные принтеры на сегодняшний день наиболее востребованы в промышленности, использующие для печатания пластик. Такие принтеры чаще всего используются не столько для изготовления готовых продуктов, как для прототипирования. На 3Д принтере можно напечатать любые высокоточные прототипы самых разных изделий.

Прототипирование применяют в разных отраслях, в том числе и в промышленном дизайне. Прототипы позволяют визуализировать различные оригинальные идеи. Также они помогают выявить недостатки будущего изделия, примерить детали, которые нужны при сборке готовой модели. Например, прототипирование применялось при разработке танка «Армата», что помогло качественно усовершенствовать машину.

Прототипирование выгодно еще и тем, что не требуется специальная оснастка, а дизайн изделия можно изменить еще на стадии цифрового формата. Тоесть, прототипы позволяют экономить время и деньги, что нужны на проведение опытно-практических работ при разработке того или иного изделия.

Возможности 3Д-принтеров еще не до конца освоены. В то время, когда взрослые печатают детали к самолетам и танкам, дети с восторгом осваивают дизайн и 3Д моделирование при помощи трехмерных технологий. Сейчас есть различные кружки, творческие центры, где дети могут освоить 3Д печать, научиться моделированию, проявить свои способности в этом деле. Возможно, в будущем многие из них выберут профессию, связанную с 3Д технологиями.

Оружие

Как ни странно, но трехмерные технологии используются сегодня и в производстве оружия. Самый простой пистолет из пластика можно создать на настольном принтере просто дома. Бойком для огнестрельного послужит обычный гвоздь. Правда, конструкция пистолета далека от совершенства, им можно серьезно пораниться самому стрелку быстрее, чем ранить нападающего.

А все началось с того, что американец К.Уилсон организовал проект Liberator, что ратовал за свободную продажу огнестрельного оружия. В наше время, имея соответствующее оборудование, можно наладить печатание оружия где угодно. Как оказалось, вести борьбу с цифровыми файлами, содержащими трехмерную модель пистолета, нереально.

Кроме пистолета Уилсон придумал печатать на 3Д-принтере ствольные коробки для карабинов АR-15, что являются прототипом автоматической винтовки М-16, что была принята на вооружение в Соединенных Штатах еще в 60-х годах. На коробках выбит номер оружия, другие же детали карабина можно приобрести в оружейной лавке.

Таким образом, незарегистрированное оружие легко можно создавать у себя дома. Что, естественно, не поддерживается соответствующими органами. В короткий срок «лавочка» Уилсона была прикрыта, а компания производитель MarkForged отказала ему в продаже трехмерного оборудования, что печатает высокопрочными композитными материалами.

Украшения

Напечатать эксклюзивный аксессуар или украшение? Легко! С помощью трехмерных технологий дизайнеры украшений и ювелиры воссоздают невероятно красивые, оригинальные и эффектные вещи. Ювелирных дел мастера, используя 3D печать, создают заготовки, из которых потом отливают формы для создания украшений из драгоценных металлов (серебра и золота).

Для этих целей применяют стереолитографические принтеры, они способны печатать смолой, что отвердевает при помощи лазерных лучей или световых приборов. На принтерах 3D также можно создавать различные аксессуары, к примеру, из фильмов фентези, начиная со светящихся мечей и заканчивая костюмами из фильма «Звездные войны».

Трехмерные принтеры

И наконец самое интересное, – трехмерные принтеры могут печать «себе подобных», то есть новые 3Д принтеры. У мейкеров есть такой термин «RepRap», он означает приблизительно следующее: 3Д принтер, что самовоспроизводится. Трехмерный принтер – это всего лишь устройство с программным управлением. Все механизмы, в том числе и печатающие головки, управляются обычным компьютером.

Много деталей 3д оборудования изготовлены из пластика. Следственно, возникает вопрос, что мешает их воспроизвести на обычном же 3d printer? Мейкеры считают, что трехмерная печать безгранична, и ее основное развитие еще впереди. Кстати, ведущие компании, что лидируют сегодня в производстве трехмерных принтеров (MakerBot или же Ultimaker), тоже начинали с простых дизайн-проектов и достигли высочайшего уровня. Хотя еще и сегодня они используют печатные детали в конструкциях фирменного 3д оборудования.

3dprinter.ua

Отправить ответ

avatar
  Подписаться  
Уведомление о