Разное

Простые проценты используются в случаях – Простые и сложные проценты: понятие и формулы

13.06.2017

Простая процентная ставка — это… Что такое Простая процентная ставка?

Процентная ставка (англ. interest rate) — это сумма, указанная в процентном выражении к сумме кредита, которую платит получатель кредита за пользование им в расчете на определенный период (месяц, квартал, год).

С позиции теории денег, процентная ставка — это цена денег как средства сбережения.

Проценты — это доход от предоставления капитала в долг в разных формах (ссуды,кредиты) либо это доход от инвестиций производного финансового характера.

Простые, сложные и непрерывно начисляемые проценты

При многократном начислении простых процентов начисление делается по отношению к исходной сумме и представляет собой каждый раз одну и ту же величину. Иначе говоря,

,

где

  • P — исходная сумма
  • S — наращенная сумма (исходная сумма вместе с начисленными процентами)
  • i — процентная ставка, выраженная в долях
  • n — число периодов начисления

В этом случае говорят о простой процентной ставке

.

При многократном начислении сложных процентов начисление каждый раз делается по отношению к сумме с уже начисленными ранее процентами. Иначе говоря,

S = (1 + i)nP

(при тех же обозначениях).

В этом случае говорят о сложной процентной ставке.

Часто рассматривается следующая ситуация. Годовая процентная ставка составляет j, а проценты начисляются m раз в году по сложной процентной ставке равной j / m (например, поквартально, тогда m = 4 или ежемесячно, тогда m = 12). Тогда формула для наращенной суммы будет выглядеть:

В этом случае говорят о номинальной процентной ставке. Сравнение сложных процентных ставок с разными интервалами начисления производят при помощи показателя годовая процентная доходность(APY).

Наконец, иногда рассматривают ситуацию так называемых непрерывно начисляемых процентов

, то есть годовое число периодов начисления m устремляют к бесконечности. Процентную ставку обозначают δ, а формула для наращенной суммы:

S = eδnP.

В этом случае номинальную процентную ставку δ называют сила роста.

Реальная и номинальная ставка

Различают номинальную и реальную процентную ставку.

Реальная процентная ставка — это процентная ставка, очищенная от инфляции.

Взаимосвязь реальной, номинальной ставки и инфляции в общем случае описывается следующей (приближённой) формулой:

ir = in − π

где:

  • in — номинальная процентная ставка
  • ir — реальная процентная ставка
  • π — ожидаемый или планируемый уровень инфляции.

Ирвинг Фишер предложил более точную модель взаимосвязи реальной, номинальной ставок и инфляции, выражаемую названной в его честь формулой Фишера:

Легко видеть, что при небольших значениях уровня инфляции π результаты мало отличаются, но если инфляция велика, то следует применять формулу Фишера.

Согласно Фишеру, реальная процентная ставка численно должна быть равна предельной производительности капитала.

Ссылки

См. также

  • Правило семидесяти — способ интуитивно оценить величину ставки.
  • рентабельность, рента, аренда денег (капитала)
  • прибыль, доход, дивиденды,дисконт,налог,акциз,профицит,выручка,заработная плата,процент
  • займ,ссуда,кредит
  • инфляция

Литература

  • Джон К. Халл Глава 4. Процентные ставки // Опционы, фьючерсы и другие производные финансовые инструменты = Options, Futures and Other Derivatives. — 6-е изд. — М.: «Вильямс», 2007. — С. 133-165. — ISBN 0-13-149908-4

Wikimedia Foundation. 2010.

dic.academic.ru

Простые проценты — это… Что такое Простые проценты?

Процентная ставка (англ. interest rate) — это сумма, указанная в процентном выражении к сумме кредита, которую платит получатель кредита за пользование им в расчете на определенный период (месяц, квартал, год).

С позиции теории денег, процентная ставка — это цена денег как средства сбережения.

Проценты — это доход от предоставления капитала в долг в разных формах (ссуды,кредиты) либо это доход от инвестиций производного финансового характера.

Простые, сложные и непрерывно начисляемые проценты

При многократном начислении простых процентов начисление делается по отношению к исходной сумме и представляет собой каждый раз одну и ту же величину. Иначе говоря,

,

где

  • P — исходная сумма
  • S — наращенная сумма (исходная сумма вместе с начисленными процентами)
  • i — процентная ставка, выраженная в долях
  • n — число периодов начисления

В этом случае говорят о простой процентной ставке.

При многократном начислении сложных процентов начисление каждый раз делается по отношению к сумме с уже начисленными ранее процентами. Иначе говоря,

S = (1 + i)nP

(при тех же обозначениях).

В этом случае говорят о сложной процентной ставке.

Часто рассматривается следующая ситуация. Годовая процентная ставка составляет j, а проценты начисляются m раз в году по сложной процентной ставке равной j / m (например, поквартально, тогда m = 4 или ежемесячно, тогда m = 12). Тогда формула для наращенной суммы будет выглядеть:

В этом случае говорят о номинальной процентной ставке. Сравнение сложных процентных ставок с разными интервалами начисления производят при помощи показателя годовая процентная доходность(APY).

Наконец, иногда рассматривают ситуацию так называемых непрерывно начисляемых процентов, то есть годовое число периодов начисления m устремляют к бесконечности. Процентную ставку обозначают δ, а формула для наращенной суммы:

S = eδnP.

В этом случае номинальную процентную ставку δ называют сила роста.

Реальная и номинальная ставка

Различают номинальную и реальную процентную ставку.

Реальная процентная ставка — это процентная ставка, очищенная от инфляции.

Взаимосвязь реальной, номинальной ставки и инфляции в общем случае описывается следующей (приближённой) формулой:

ir = in − π

где:

  • in — номинальная процентная ставка
  • ir — реальная процентная ставка
  • π — ожидаемый или планируемый уровень инфляции.

Ирвинг Фишер предложил более точную модель взаимосвязи реальной, номинальной ставок и инфляции, выражаемую названной в его честь формулой Фишера:

Легко видеть, что при небольших значениях уровня инфляции π результаты мало отличаются, но если инфляция велика, то следует применять формулу Фишера.

Согласно Фишеру, реальная процентная ставка численно должна быть равна предельной производительности капитала.

Ссылки

См. также

  • Правило семидесяти — способ интуитивно оценить величину ставки.
  • рентабельность, рента, аренда денег (капитала)
  • прибыль, доход, дивиденды,дисконт,налог,акциз,профицит,выручка,заработная плата,процент
  • займ,ссуда,кредит
  • инфляция

Литература

  • Джон К. Халл Глава 4. Процентные ставки // Опционы, фьючерсы и другие производные финансовые инструменты = Options, Futures and Other Derivatives. — 6-е изд. — М.: «Вильямс», 2007. — С. 133-165. — ISBN 0-13-149908-4

Wikimedia Foundation. 2010.

dic.academic.ru

Простые и сложные проценты

     На сегодняшний день наиболее простой по энергозатратам способ получения прибыли – это инвестиции. Особых усилий прикладывать не нужно, если имеются свободные денежные средства, их нужно положить в банк и спокойно ждать, когда сумма вклада увеличится до желаемого размера. Однако, есть здесь и свои риски. Не будем говорить о самых страшных, когда банк может просто обанкротиться. Риск существует и при неправильном или плохо просчитанном вложении средств. В этом случае вкладчик рискует не получить желаемой прибыли или получить ее в меньшем размере. В последнее время очень популярен инвестиционный заработок в интернете.

 

     Основной операцией в инвестиционной и экономической деятельности является операция начисления процентов. Что же это за операция? Поясним на конкретном примере. Например, когда вкладчик открывает в банке депозит, то через определенный период времени средства возвращаются к нему с прибылью. Вполне логично, что, получив прибыль, вкладчик захочет еще раз провести ту же операцию, а возможно, и несколько раз. Вот здесь перед ним и возникают такие понятия, как простые и сложные проценты. Какой из этих показателей более выгодный. Попробуем разобраться.

 Простые и сложные проценты

С повторным или неоднократным вложением денег регулярно сталкиваются не только профессиональные инвесторы или рядовые вкладчики, но и те, кто работают на валютных биржах. И если, скажем, при вложении денег в банк депозит приносит прибыль через определенное время, то при инвестировании в валютной сфере прибыль или наоборот, убыток, появляются после проведения каждой операции. Поэтому и просчитывать возможную прибыль здесь необходимо более тщательно, чем при банковских вкладах.

Итак, что же такое простые и сложные проценты?

 

Под простым процентом понимается прибыль, которая начисляется только на первоначальную сумму за каждый определенный промежуток времени.

 

Например, владелец кладет в банк депозит в размере 5000$, ставка 20% годовых. Простой процент будет приносить прибыль в размере 1000$ каждый год, независимо от того, какая сумма уже накопилась на счету за это время и независимо от того, оставляет он проценты в банке или регулярно снимает их.
То есть при схеме простого процента база начисления прибыли всегда равна первоначальной вложенной сумме. Этот вид начисления процентов используется при специальных банковских депозитах, а также при оформлении кредита. Если инвестор намерен периодически выводить прибыль со своего счета, ему также будет предложен депозит с начислением простого процента.

 

Сложный процент – несколько иная форма начисления процентов по вкладу. Прибыль здесь начисляется не на первоначальный взнос, а на целую сумму, вместе с уже начисленными процентами, которая в данный момент находится на счету у вкладчика. То есть, по истечении каждого периода сумма, на которую начисляется прибыль, пропорционально увеличивается.
Возьмем тот же пример с депозитом в размере 5000$ и ставкой 20% в год. В первый год проценты будут начисляться с 5000$, и прибыль составит 1000$. В следующем году процент уже будет начисляться с 6000$ и так далее, пока вкладчик не примет решение вывести депозит со счета.
Схема сложного процента используется на валютных и других биржах, потому что в этой области постоянно меняются суммы вложений. Также эта схема удобна, если инвестору нет необходимости выводить прибыль после окончания определенного периода. В этом случае деньги «работают» на своего владельца постоянно. Еще один пример, когда лучше использовать сложный процент, это когда планируется периодически или регулярно пополнять сумму вклада.

 
 

 

При первом знакомстве кажется, что между простыми и сложными процентами не так уж много отличий. Однако, преимущество сложных процентов очевидно, и с течением времени оно становится более явным. При использовании схемы сложного процента можно увеличить сумму инвестиции в несколько раз. Приведенные ниже примеры покажут наглядно, насколько выгоднее использовать сложные проценты. А чтобы использовать их грамотно, нужно уметь считать их правильно. В этом помогут следующие формулы.

 

Как рассчитать сложные проценты

 

Для того, чтобы просчитать, как приумножить деньги сложными процентами и какую прибыль принесет банковский вклад за несколько лет, нужно знать следующие показатели:

 
  • первоначальный размер вклада К0
  • ставка дохода R
  • количество лет, за которые нужно просчитать доход n
  • конечная сумма К

По следующей формуле можно рассчитать эту самую конечную прибыль:
К=К0*(1+R)n
А просчитав размер конечной суммы, легко можно установить размер прибыли – это разница между конечной и первоначальной суммами.
При помощи приведенной выше формулы всегда можно просчитать, какой результат принесет в будущем инвестиция.

 

     Иногда возникают ситуации, когда нужно, наоборот, вычислить стартовую сумму вклада. Тогда эту формулу нужно преобразовать вот в такой вид:
K0=K/(1+R)n
С помощью формулы можно узнать и такой параметр, как процентная ставка. Эта информация требуется, когда инвестор, к примеру, хочет узнать, какую ставку ему выбрать, и на какой период нужно сделать вклад, чтобы получить конкретную прибыль.
Формула вычисления сложных процентов:
R=n?K/K0-1
А вот по этой формуле высчитывается период времени, на который нужно вложить средства, чтобы получить определенную желаемую прибыль:
n=log1+R*K/K0

 

     При расчете срока вклада для получения определенной прибыли следует учитывать тот факт, что практически все банки используют целые периоды. То есть, если расчет по формуле показал, что средства для получения конкретной прибыли нужно вложить на 3 года и 9 месяцев, то нужно понимать, что в реальности необходимо будет положить депозит на 4 полных года.
Есть и более сложные примеры расчетов прибыли по сложным процентам. К таким примерам относятся вклады с возможностью пополнения. Допустим, у вкладчика есть депозит, который он ежемесячно пополняет определенной суммой. Как же рассчитать, какую прибыль он получит с такого депозита?

Здесь уже простой формулой расчета не обойтись, нужны более сложные механизмы.
Рассмотрим эту задачу на конкретном примере: вкладчик положил на счет 1000$ и каждый месяц добавляет к нему 50$. Допустим, процентная ставка составляет 1% в месяц. Для подсчета конечной суммы через пять лет нужно подставить в приведенные выше формулы показатели за каждый период, т.е. за 60 месяцев. Ведь сумма увеличивается не только за счет процентов, но и за счет ежемесячного добавления. При данных условиях по итогам первого месяца сумма на счету составила 1010$. К ней добавились еще 50$. То есть, для расчета конечной суммы во второй месяц процент нужно начислять уже на 1060$. И так далее, до окончания задуманного срока.

 

 

 

Конечно, каждый раз производить такие вычисления довольно сложно, особенно тем, кто не владеет достаточными познаниями в математике. Да и таблицы такие каждый раз не насоставляешься. Поэтому специально для вычисления сложных процентов по вкладам можно разработать свой калькулятор например в таблице excel.

 

Итак, очевидна разница между простыми и сложными процентами. Однако, следует отметить, что и схема простых процентов при грамотном ее использовании также может принести довольно хорошие результаты в виде прибыли. Более того, простые проценты являются единственным приемлемым вариантом, когда вкладчик нуждается в регулярном выводе средств со счета. Тогда он просто выводит сумму прибыли, накопившейся за месяц, полгода или год. Тогда как сложные проценты более приемлемы в случае долгосрочного вклада и повторного реинвестирования.

Читайте также: Фандрайзинг

 

trey.pro

Простые процентные ставки

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Экономический факультет

Кафедра финансов и налогообложения

РЕФЕРАТ

по дисциплине: «Финансовый менеджмент»

на тему: «Простые процентные ставки»

Выполнил: студентка 2 курса

заочного отделения

специальности

«финансы и кредит»

Группа № 3.5ФК

Дмитриева Г.Ф.

Проверил: ст. преп.

Валиева Г.У.

Уфа-2010

Введение

Относительный показатель, характеризующий интенсивность начисления процентов за единицу времени — процентная ставка. Методика расчета проста: отношение суммы процентных денег, выплачивающихся за определенный период времени, к величине ссуды. Этот показатель выражается либо в долях единицы, либо в процентах. Таким образом, процентная ставка показывает, сколько денежных единиц должен заплатить заемщик за пользование в течение определенного периода времени 100 единицами первоначальной суммы долга. Проценты — это доход от предоставления капитала в долг в различных формах (ссуды, кредиты и т. д.), либо от инвестиций производственного или финансового характера.

Простая процентная ставка применяется к одной и той же первоначальной сумме долга на протяжении всего срока ссуды, т.е. исходная база (денежная сумма) всегда одна и та же.

Процентная ставка — это величина, характеризующая интенсивность начисления процентов.

Величина получаемого дохода (т. е. процентов) определяется исходя из величины вкладываемого капитала, срока, на который он предоставляется в долг или инвестируется, размера и вида про­центной ставки (ставки доходности).

Наращение (рост) первоначальной суммы долга — это увеличение суммы долга за счет присоединения начисленных процентов (дохода).

Множитель (коэффициент) наращения — это величина, показывающая, во сколько раз вырос первоначальный капитал.

Период начисления — это промежуток времени, за который начисляются проценты (получается доход). В дальнейшем будем полагать, что период начисления совпадает со сроком, на который предоставляются деньги. Период начисления может разбиваться на интервалы начисления.

Интервал начисления — это минимальный период, по прошествии которого происходит начисление процентов.

Существуют две концепции и, соответственно, два способа определения и начисления процентов.

Декурсивный способ начисления процентов. Проценты начисляются в конце каждого интервала начисления. Их величина определяется исходя из величины предоставляемого капитала. Соот­ветственно декурсивная процентная ставка, или, что то же, ссудный процент, представляет собой выраженное в процентах отношение суммы начисленного за определенный интервал дохода к сумме, имеющейся на начало данного интервала.

Антисипативный способ (предварительный) начисления процентов. Проценты начисляются в начале каждого интервала начисления. Сумма процентных денег определяется исходя из нара­щенной суммы. Процентной ставкой будет выраженное в процентах отношение суммы дохода, выплачиваемого за опрошенный интервал, к величине наращенной суммы, полученной по прошествии этого интервала. Определяемая таким способом процентная ставка называется (в широком смысле слова) учетной ставкой или антисипативным процентом.

В мировой практике декурсивный способ начисления процентов получил наибольшее распространение. В странах развитой рыночной экономики антисипативный метод начисления про­центов применялся, как правило, в периоды высокой инфляции.

При обоих способах начисления процентов процентные ставки могут быть либо простыми (если они применяются к одной и той же первоначальной денежной сумме в течение всего периода на­числения), либо сложными (если по прошествии каждого интервала начисления они применяются к сумме долга и начисленных за предыдущие интервалы процентов).

В российской практике понятия ссудного процента и учетной ставки обычно не различаются и обозначаются собирательным термином «процентная ставка» (термин «учетная ставка» можно также встретить применительно к ставке рефинансирования Центрального банка и к вексельным операциям).

В связи с этим необходимо подчеркнуть, что по мере развития рыночных отношений вопрос различия декурсивного и антисипативного методов начисления приобретает все большую актуальность.

Финансисту — инвестору ли (вкладчику), заемщику ли средств — в любом случае необходимо иметь представление о способе начисления процентов, подразумеваемом в каждой конкретной сделке, тем более, что при укрупнении масштабов операции каждый процентный пункт становится все «тяжелее» и «тяжелее».

В последующих разделах будут приведены вычисления и даны примеры и графики, наглядно демонстрирующие, сколь ощутимыми могут быть различия в результатах при разных способах начисления процентов. Непонимание различия между видами процентных ставок может при этом вылиться не только в упущенную выгоду, но и в значительные убытки.

1 Простые ставки ссудных процентов

Простые ставки ссудных (декурсивных) процентов применяются обычно в краткосрочных финансовых операциях, когда интервал начисления совпадает с периодом начисления (и составляет, как правило, срок менее одного года), или когда после каждого интервала начисления кредитору выплачиваются проценты. Естественно, простые ставки ссудных процентов могут применяться и в любых других случаях по договоренности участвующих в операции сторон.

Введем следующие обозначения:

i (%) — простая годовая ставка ссудного процента;

i — относительная величина годовой ставки процентов;

— сумма процентных денег, выплачиваемых за год;

I — общая сумма процентных денег за весь период начисления;

Р — величина первоначальной денежной суммы;

S — наращенная сумма;

— коэффициент наращения;

n — продолжительность периода начисления в годах;

d — продолжительность периода начисления в днях;

К — продолжительность года в днях.

Величина К является временной базой для расчета процентов.

В зависимости от способа определения продолжительности финансовой операции рассчитывается либо точный, либо обыкновенный (коммерческий) процент.

Дата выдачи и дата погашения ссуды всегда считаются за один день. При этом возможны два варианта:

вариант 1 : используется точное число дней ссуды, определяемое по специальной таблице, где показаны порядковые номера каждого дня года; из номера, соответствующего дню окончания займа, вычитают номер первого дня;

вариант 2 : берется приблизительное число дней ссуды, когда продолжительность полного месяца принимается равной 30 дням; этот метод используется, когда не требуется большая точность, например, при частичном погашении займа.

Точный процент получают, когда за временную базу берут фактическое число дней в году (365 или 366) и точное число дней ссуды.

Приведенным выше определениям соответствуют формулы:

Применяя последовательно формулы (1.4), (1.3), (1.2) и (1.6), получаем основную формулу для определения наращенной суммы:

mirznanii.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *